Effects of Future Development on Pocono Cr. Flow & Ecological Integrity

Charles App, EPA Region 3 ; Pamela V'Combe, Delaware River Basin Commission; Mark A. Hartle, Pennsylvania Fish & Boat Commission ; Mohamed M. Hantush U.S. EPA, National Risk Management Research Laboratory ; Ronald A. Sloto, USGS PA Water Science Center ; James Henriksen, Environmental Flow Specialists ; Brian S. Cade, USGS Fort Collins Science Center

Introduction

Pocono Creek

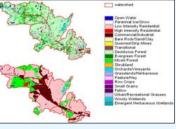
- > High quality wild trout stream
- Watershed : 18 mi length, 46.5 mi²
- > Monroe Co., PA 2nd in growth
- Population
 - increased > 50% in past decade
- projected to increase 60% by 2020
- Tourism based economy
- More than 50% undeveloped

Concern

Will projected growth/land use change deplete GW & streamflows, impacting trout population?

> Watershed impervious surface projected to increase from existing 1.3% to 33% at build out

Approach

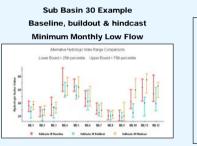

- Ground water model (USGS) -MODFLOW
- > Hydrology model (EPA, NRML) Soil & Water
 - Assessment Tool (SWAT)
- > Hydroecological Integrity Assessment Process (USGS-Ft Collins) - Implements Olden & Poff (2003) approach
- Relate flow indices to trout population data in PA (USGS-Ft Collins)

"BUILD OUT" SCENARIO(BOTTOM)

Results

GW and Hydrology Models

Build Out Compared to Existing Conditions



Hydroecological Integrity Assessment

Pocono Creek Watershed Hydrologic Alteration at Build Out Compared to Existing Conditions

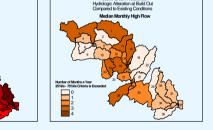
Flow metric guidelines i maintain Q metric within 25^{th -} 75th percentile

of the baseline or "unaltered flow"

Frequency of low flow (< 25th %ile)

- increased in 31 of 37 sub basins
- Increase of 17% to 525%

Frequency of high flow (> 75th %ile)


- increased in 32 of 37 sub basins
- increase of 6% to 238%

Evaluation of Hydroecological Indices - Trout Biomass Relationships

- HIP metric trout biomass relationships weak, highly variable
- Limited predictive power best across longer gradients of indices
- Existing data not sufficient to support specific flow standards

Conclusions

- > Build out land use change significant flow alteration
- > Without mitigating actions, significant effects on trout populations expected

Duration of low flow (<25th %ile)

- decreased in 33 of 37 sub basins
- decreased from 14% to 78%
- Duration of High Flow (> 75th %ile)
 - decreased in 33 of 37 sub basins
 - decreased 1% to 40%