2021

Monroe County Water Quality Study

Monroe County Planning Commission Monroe County Conservation District 701 Main Street, Suite 405 Stroudsburg, PA 18360-2169 (570) 517-3100 Fax (570) 517 3858 www.monroecountypa.gov

Table of Contents

Section I. Materials and Methods 4
Field Chemistry Sampling4
Laboratory Chemistry Sampling4
Macroinvertebrate Sampling5
Habitat Analysis
Field Measurements
Section II. Surface Water Parameters
Field Measurement Data Form7
Water Chemistry Laboratory Analysis8
What Are Macroinvertebrates? 11
Section III. Benthic Macroinvertebrates
Macroinvertebrate Analysis11
Wadeable Freestone Riffle-Run Stream11
Wadeable Multihabitat Stream16
Section IV. Physical Habitat Evaluation19
PA DEP Physical Habitat Evaluation Method19
Riffle/Run Habitat Evaluation Parameters19
Riffle/Run Habitat Evaluation Form20
Low Gradient Habitat Evaluation Parameters22
Multihabitat, Low Gradient Habitat Evaluation Form23
Section V. Sample Locations & Results
Site Location Map25
Location Descriptions
Site Summary Sheets
Section VI. Discussion & Conclusion
Highlights
Recommendations
Section VII. References

PREPARED BY MONROE COUNTY

Board of Commissioners

Sharon S. Laverdure, Chairman John R. Moyer, Vice-Chairman John D. Christy, Commissioner Greg Christine, Chief Clerk/Administrator

Monroe County Planning Commission Board

Annette Atkinson, Chairman Charles Vogt, Vice-Chairman Nicole Murray Meg Dilger Roger McFadden Robert Baxter Chris Borger Rich Schlameuss James Fareri

Monroe County Planning Commission Staff

Christine Meinhart-Fritz, Director Eric Koopman, Lead Senior Planner Fallon Horan, Open Space Coordinator Kim Borger, Planner/E911 Addressing Coordinator Danielle Zuk, Planner Ryan Hill, Environmental Planner Lee Schuler, Vector Management

PROJECT PARTICIPANTS

Lead Agencies

Monroe County Planning Commission Program Director: Christine Meinhart-Fritz Environmental Planner: Ryan Hill Vector Management: Lee Schuler

Monroe County Conservation District

District Manager: Kristina Heaney Head Resource Conservationist: Lori Kerrigan Resource Conservation Specialist: Steven Baade Resource Conservation Specialist: David Hooker Resource Conservation Specialist: Andrea Polkowski Resource Conservation Specialist: David Lucykanish Environmental Educator: Brittney Coleman

Cooperating Agencies

Pennsylvania Department of Environmental Protection (PADEP) Brodhead Watershed Association (BWA)

Entomology Consultants

Donald Baylor and Ken Ersbak Aquatic Resource Consulting (ARC) 944 Route 715 Saylorsburg, PA 18353

Laboratory Consultant

Microbac Laboratories 1620 North Main Avenue Scranton, PA 18058

Section I. Materials and Methods

Field Chemistry Sampling

Field chemistry sampling was conducted using a hand-held YSI Professional Digital Sampling System (ProDSS) multiparameter water quality meter. The meter was calibrated to known standards/solutions at the beginning of each sampling day, and the following parameters were collected and recorded on standard data forms at each sampling location:

- Potential of Hydrogen (pH)
- Temperature
- Dissolved Oxygen (D.O.) Concentration
- D.O. %
- Conductivity

Laboratory Chemistry Sampling

Chemical sampling was conducted using sampling bottles and

directives by Microbac Laboratories. The samples were

Figure 1: Field chemistry being sampled by Steven Baade, April 2021.

transported on ice to their facilities via courier at the end of each sampling day. The following table shows the parameters that were collected and analyzed for each sampling location:

Table 1: Chemical testing parameters by Microbac Laboratories

Test	Units	Method	Reporting Limit (RL)
Nitrate Calculated	mg/L	EPA 353.2, Rv. 2 (1993)	0.0500
Biochemical Oxygen Demand (BOD5)	mg/L	SM 5210 B-2011	3.00
Hardness (as CaCO₃)	mg/L	Calculation by ICP	0.999
Aluminum	mg/L	EPA 200.7, Rv. 4.4 (1994)	0.160
Calcium	mg/L	EPA 200.7, Rv. 4.4 (1994)	0.400
Iron	mg/L	EPA 200.7, Rv. 4.4 (1994)	0.0800
Magnesium	mg/L	EPA 200.7, Rv. 4.4 (1994)	0.400
Chloride	mg/L	EPA 300.0, Rv. 2.1 (1993)	0.50
Alkalinity, Total to CaCO ₃ to pH 4.5	mg CaCO₃/L	SM 2310 B-2011	6.0
Total Dissolved Solids (TDS)	mg/L	SM 2540 C-2011	10.0
рН	N/A	SM 4500-H+ B-2011	1.0
Ammonia as N	mg/L	SM 4500-NH3 F-2011	0.30
Total Kjeldahl Nitrogen (TKN)	mg/L	SM 4500-NH3 F-2011	1.25
Phosphorus, Total as P	mg/L	SM 4500-P E-2011	0.020
Total Organic Carbon (TOC)	mg/L	SM 5310 C-2011	0.50

Macroinvertebrate Sampling

Collection of macroinvertebrates began with delineating a 100-meter reach of each sampling location that best represented the habitat of the stream. Collection would be distributed throughout the 100-meter reach and would represent the variety of habitats shown in the bullet points below. In each case, macroinvertebrates were collected using a 12" 500 micron D-frame net that was held downstream from the substrate disturbance. The collection would be moved upstream along the 100-meter reach to limit disturbance of the study area. Six one-minute kicks were used in each of the riffle/run habitats and ten jabs or kicks were used in the multi-habitat locations (*Shull & Lookenbill, 2018*).

Riffle/Run Habitat - Six samples within 100-meter reach

- Fast/Shallow
- Fast/Deep
- Slow/Shallow
- Slow/Deep

Multi-Habitat Collection – Ten samples within 100-meter reach

- Cobble/Gravel
- Snag
- Coarse Particulate Organic Matter (CPOM)
- Submerged Aquatic Vegetation (SAV)
- Sand/Fine Sediment

Figure 2: Collecting macroinvertebrates.

Each sample was placed in round wide-mouth plastic jar containing 95% ethanol and delivered to Aquatic Resource Consulting for macroinvertebrate identification and analysis.

Habitat Analysis

Each sampling location was assessed as riffle/run or low gradient streams depending on the habitat. Each parameter was rated on a score from 1-20; 20 being the highest score possible (*Shull & Lookenbill, 2018*).

Riffle/Run Streams

Instream Cover Epifaunal Substrate Embeddedness Velocity/Depth Regimes Channel Alteration Sediment Deposition Riffle Frequency Channel Flow Status Condition of Banks Bank Vegetative Protection Grazing or Other Disruptive Pressure Riparian Vegetative Zone

Low Gradient Streams

Epifaunal Substrate/Available Cover Pool Substrate Characterization Pool Variability Sediment Deposition Channel Flow Status Channel Alteration Condition of Banks Bank Vegetative Protection Riparian Vegetative Zone

Field Measurements

Potential of Hydrogen (pH)

pH is an expression of the hydrogen ion concentration in water. The pH scale is used to determine the acidity or basicity of a solution on a scale of 0 to 14, with pH 7 being neutral. When the pH of a solution is below 7, the solution is acidic. If the pH of a solution is above 7, the solution is basic. pH impacts most chemical and biological process in water and different species flourish within different ranges of pH. Most aquatic organisms have an optimal pH range between 6.5 - 8. Slight changes in pH can shift community composition in streams. This is because pH alters the chemical state of many pollutants, changing their solubility, transport, and bioavailability. This can increase the exposure to and toxicity of metals and nutrients to aquatic organisms (EPA, 2018).

Temperature

Water temperature is influenced by many atmospheric and hydrologic processes and plays a fundamental role in shaping the structure and function of aquatic systems. Even a slight change in temperature can affect aquatic organism survival, growth, reproduction, and development. The temperature of the stream is also used as the basis for classifying streams. (EPA, 2018)

Dissolved Oxygen (DO)

Dissolved oxygen refers to the concentration of oxygen gas incorporated in water. It enters the water through direct absorption from the atmosphere and is enhanced by turbulence. Sufficient DO is essential to the growth and reproduction of aerobic aquatic life. Sources from non-point or point source runoff, impoundments, treatment outfalls, and removal of riparian vegetation can impact the DO of a water body (EPA, 2018). In 25 Pa Code Chapter 93.7, the current DO criteria for flowing waters is: CWF; 7-day average 6.0 mg/L; minimum 5.0 mg/L. WWF; 7-day average 5.5 mg/L; minimum 5.0 mg/L. TSF; For the period February 15 to July 31 of any year, 7-day average 6.0 mg/L; minimum 5.0 mg/L. For the remainder of the year, 7-day average 5.5 mg/L; minimum 5.0 mg/L.

Specific Conductance

Conductivity is a measure of waters ability to pass an electrical current and is used as a general measure of water quality. Dissolved salts and other inorganic compounds conduct electrical currents so as salinity in a waterbody increases, conductivity increases. Significant changes in the conductivity could be an indicator of a discharge or other source of pollution that is influencing the aquatic system (EPA, 2016). The conductivity in the United States can range from 50 to 1500 μ S/cm, but inland freshwater streams supporting good mixed fisheries generally range from 150 to 500 μ S/cm (EPA, 2012).

Field Measurement Data Form

		5	ite Information	1. I. I		
Characteric				Date		
Stream ID				Time		
Stream Name				Air Temp		
Latitude DMS				Weather		
Longitude DMS				Studied by		
			Field Chemistry	-	Juctance	
			and the second second	-	history	
Make sure there is complete mixing (similary readings across the stream)	рН	%DO	mg/LDO	(µS/cm)	TDS (mg/L)	Temp (°C)
Right Bank						
Thalweg			•			
Left Bank						
			nvertebrates Sa 12" diameter D-Frame net			
Multihabitat (10 samples	s)		Riffle/Ru	n (6 Samples)	
Choose 10 sites based on In stream abundance	Target	Talley	At least 1 of each flow regimes	Tailey	Comments:	
Cobble/Gravel			slow/shallow			
Snag		_	fast/shallow			
		4	slow/deep			
CPOM			fast/deep			
201, 3 + 201,						
CPOM Submerged Aquatic Veg Sand/Fine Sediment			Total	6		

Water Chemistry Laboratory Analysis

Nitrogen

Nitrogen can be found in several types of species throughout the natural environment. Through nitrification and denitrification, bacteria can convert nitrogen which can increase or decrease availability of this essential limiting nutrient in a system. Nitrification is when bacteria transform ammonia (NH₃) into nitrite (NO₂⁻) and then to nitrate (NO₃⁻), and denitrification is when bacteria convert nitrate to nitrite and then nitrogen gas. Additionally, ammonia can be transformed from ammonium in low oxygen environments. Excessive nutrients in surface water promotes eutrophication which is when algae and bacterial blooms are stimulated and causes a decrease in oxygen to other aquatic organisms. Sources such as fertilizer, effluent from treatment plants, urban stormwater runoff, and livestock waste can all contribute to an influx of nitrogen into a system (EPA, 2006). Early laboratory studies demonstrated that the lethal concentrations for a variety of fish range between 0.2 to 2.0 mg/L NH₃ with trout being the most sensitive species (EPA, 1976).

Biological Oxygen Demand (BOD)

BOD measures how much oxygen is consumed while microorganisms decompose organic matter. This directly affects the amount of dissolved oxygen available. The higher the BOD, the more rapidly oxygen is consumed. Sources of BOD can include leafy debris, dead organisms, effluent from wastewater treatment plants, urban storm water runoff, and feedlots. Generally, unpolluted natural waters have <5 mg/L BOD levels (EPA, 2006).

Total Hardness

Water hardness is caused by metallic ions, primarily calcium and magnesium, dissolving in water. Other metals such as iron, strontium, and manganese can also contribute to the hardness. Natural contributors of water hardness include dissolved limestone however, inorganic chemical industries and abandoned mines can also contribute to increased water hardness (EPA, 1986). According to the USGS Water Science School (n.d.), general classification of waters are:

Soft Water	0 - 60 mg/L
Moderately Hard Water	60 - 120 mg/L
Hard Water	120 - 180 mg/L
Very Hard Water	180 mg/L and up

Aluminum

Aluminum is a natural element found in rocks and soils that can enter the water through natural processes. It can also be released by activities like mining and industrial processes that use aluminum. Elevated levels of aluminum in surface water can affect aquatic organism's ability to regulate ions and inhibit respiratory function. According to 25 Pa Code Chapter 93.8c, the water quality criteria for toxic substances maximum concentration is 750 µg/L. According to the Final Aquatic Life Ambient Water Quality Criteria for Aluminum, the concentration varied as a function of the sites pH, DOC, and total hardness but ranged between 1-4,800 µg/L (EPA, 2018).

Calcium

Calcium is a naturally occurring element in water bodies due to its abundance in the earth's crust. It enters waterways through the erosion process of sedimentary rocks such as limestone. It is a contributor of water hardness and can influence pH because of its buffering quality. Rivers generally contain 1-2 mg/L calcium. In limestone areas, rivers may contain calcium concentrations as high as 100 mg/L (Lenntech, 2020).

Total Kjeldahl Nitrogen

T.K.N is the sum of free-ammonia and organic nitrogen compounds. Samples in the field are preserved by the addition of Sulfuric Acid (H_2SO_4) (EPA, 1993).

Iron

Iron is the fourth most commonly found element in the earth's crust which enters waterbodies in varying quantities depending on the surrounding geological formations and hydrological processes. In the aquatic environment there are two types of iron of most concern ferrous (Fe²⁺) and ferric (Fe³⁺), although other forms can be found. Ferrous iron can originate from mining operations and inorganic wastewater and can persist in anaerobic conditions. Ferric iron is highly insoluble and can originate from industrial wastes or mine drainage (EPA, 1976).

Magnesium

Magnesium is the eighth most abundant element found in the earth's crust and is frequently used in manufacturing, fertilizer, and animal feed. Along with calcium, it contributes to the hardness and salinity of waterbodies (USGS, 2001).

Chloride

Chlorides are salts resulting from the combination of the gas chlorine with a metal. The major anthropogenic sources of chloride are deicing salts, urban and agricultural runoff, and effluent from wastewater plants (EPA, 1988). The EPA maximum criteria for chloride is 250 mg/L (25 Pa. Code § 93.7).

Total Organic Carbon (TOC)

TOC is the measure of the total amount of carbon in organic compounds in a water sample (Whitehead, 2020). This measurement is important to characterize the amount of oxygen being used by microorganisms thereby depleting the oxygen availability of other aquatic organisms. The samples collected in the field were preserved by the addition of 1 mL of sulfuric acid (H₂SO₄).

Total Alkalinity

Alkalinity is the measure of the capacity of water to neutralize acids. Alkaline compounds do this by combining with hydrogen ions to increase the pH of the solution. Alkalinity is influenced by geologic formations, salts, plant activity, and wastewater effluent. The ability for water to resist drastic pH change is crucial to the survival of aquatic life (EPA, 2006). The minimum criteria from EPA for alkalinity is a minimum of 20 mg/L as CaCO₃, except where natural conditions are less. If so, the discharge to the waterway should not further reduce the alkalinity of the receiving waters (25 Pa. Code § 93.7).

Total Dissolved Solids (TDS)

Total Solids refers to the suspended or dissolved matter that is left over after the sample of water is evaporated. Total Dissolved Solids are determined after the matter is filtered through a 2 μ m or smaller pore size filter which retains the suspended particles. Regular monitoring can assist in determining increased erosion or sedimentation influx into the waterway (EPA, 2006). The criteria for TDS is 500 mg/L as a monthly average or a maximum value of 750 mg/L (25 Pa. Code § 93.7).

Total Phosphorus

Total phosphorus refers to the dissolved and particulate forms of phosphorus in a water sample. Phosphorus is an essential nutrient that can enter waterbodies in numerous ways. Fertilizers, waste treatment effluent, and agricultural/urban runoff are a few examples of how phosphorus can enter a system. Phosphorus tends to attach to soil particles making them easily transported during high runoff events. Excessive nutrients in surface water promotes eutrophication which is when algae and bacterial blooms are stimulated and causes a decrease in oxygen to other aquatic organisms (EPA, 2006).

Section III. Benthic Macroinvertebrates

What Are Macroinvertebrates?

The organisms collected during the water quality study are called benthic macroinvertebrates. Benthic defines the zone in which they occupy which is on, in, or near the stream bottom. Macroinvertebrate are animals without a backbone and large enough to see with the naked eye. Macroinvertebrates are an important link in the food web between producers and higher consumers such as fish. They are commonly used to study water quality for several reasons. They are fairly easy to sample and identify, they are sensitive to pollution and changes in their habitats, they are common in most streams and

rivers, and they offer an indicator of water quality over time due to their relatively long life cycle (Stroud Water Research, 2020).

Macroinvertebrates can be divided into several groups based on pollution tolerance. Ephemeroptera (mayflies), Plecoptera (stoneflies), and Tricoptera (caddisflies) and many others can be an indicator of the best water quality because they are intolerant of frequent or prolonged pollution in their habitats. Macroinvertebrates such as aquatic worms and blood midge larvae can tolerate a significant amount of pollution but can also live in a broader range of quality conditions. The ongoing collection of macroinvertebrate populations can indicate drastic

Figure 3: Collecting macroinvertebrates.

change in conditions, offer a clearer picture of water quality, and provide overall environmental oversight in a stream (Penn State Extension, 2020).

Chalfant (2012) defines how PADEP assigns numeric pollution tolerance values (PTV) to most macroinvertebrates found in Pennsylvania in A benthic index of biotic integrity for wadeable freestone streams in Pennsylvania. The values range from zero to ten, with ten representing a relative tolerance to pollution. Most of the values reflect the response to pollution related to organic enrichment and sedimentation, and not necessarily reflective of other types of pollution such as low pH related to stream acidification. Chalfant lists the pollution tolerance values in Appendix D and includes other attributes pertaining to macroinvertebrate tolerance to pollution.

Macroinvertebrate Analysis

The PA Department of Environmental Protection (PADEP) has designed several assessment methods for Aquatic Life Use determinations based on the type of biological attributes and gradient conditions of a stream. For the Monroe County study sampling locations, the wadeable freestone riffle-run stream macroinvertebrate assessment method and the wadeable multihabitat stream macroinvertebrate assessment method were applied and described below. The published protocols and equations are designed to ultimately find the index of biotic integrity (IBI) which enables the ability to quantify the evaluation of the stream and assist in management of the natural resource (Shull & Pulket, 2018).

Wadeable Freestone Riffle-Run Stream

The metrics used to evaluate the macroinvertebrate population in freestone riffle-run streams exhibited a strong ability to distinguish between pristine and heavily impacted conditions while measuring different aspects of the benthic macroinvertebrate communities.

Freestone riffle/run stream macroinvertebrate collection is conducted with a D-framed net with 500 μ m mesh. A 100-meter reach is chosen which best represents the ideal habitats describes in the methods section. Each of the six kicks disturbs 1 m² immediately upstream of the net to an approximate depth of 10 cm. The kicks are completed from downstream to upstream to avoid disturbance (Shull & Lookenbill, 2018). Once the sampling is complete, each sample is composited into one container preserved with 95% ethanol in the field and transported to the contracted entomologist for enumeration and identification.

The following metrics and analyses are from Shull and Pulket (2018) wadeable freestone riffle-run stream macroinvertebrate assessment method in PA DEPs *Assessment Methodology for Rivers and Streams*:

Total Taxa Richness

This metric is the count of the total number of taxa in a sub-sample. As anthropogenic stress increases on a stream ecosystem, it is expected that the total taxa will decrease while generally increasing the dominance of a few pollutant tolerant taxa.

EPT Taxa Richness

EPT taxa richness metric is the count of the number of taxa belonging to the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT) in a sub-sample. The common name for these insect orders are mayflies, stoneflies, and caddisflies. The reason these are important metrics is because these insect orders are generally considered intolerant of many types of pollution. It is important to note that this metric excludes some of the more tolerant mayfly and caddisfly, and only counts the EPT taxa with pollution tolerant values (PTV) of 0 to 4. This metric reflects the loss of taxa with low pollution tolerance and is expected to decrease with increasing anthropogenic stress.

Modified Beck's Index (Version 3)

Modified Beck's index is a weighted count of taxa with a pollution tolerance value of 0, 1, or 2. The metric is expected to decrease as anthropogenic stress is increased.

Shannon Diversity

Shannon diversity is a community composition metric. It measures taxonomic richness and evenness of individuals across taxa of a sub-sample. When the loss of pollution intolerant taxa occurs and there is an increasing dominance of a few pollution tolerant taxa, it indicates an increase of stress to the ecosystem and the metric will decrease.

Hilsenhoff Biotic Index

The Hilsenhoff Biotic Index weighs the values by pollution tolerance and is a community composition and tolerance metric that is the average of the number of individuals in a sub-sample. The index increases with ecosystem stress and reflects increasing dominance of pollution tolerant organisms.

Percent Sensitive Individuals

This metric accounts for the percent of individuals with pollution tolerance values from 0 to 3. The value is expected to decrease in value with increasing stress to an ecosystem reflecting the loss of pollution-sensitive organisms (Shull & Pulket, 2018).

Aquatic Resource Consulting provides the metrics calculated for both small and large stream size which is used to account for natural changes in benthic biota with stream size. Generally, the small stream values are used for first, second, and third order streams draining less than 25 to 50 mi², while larger stream values are appropriate for fifth and larger streams draining more than 50 mi². PADEP does not set a single cutoff for drainage area or stream order, and offers other screening considerations when making an assessment decision (Shull & Pulket, 2018). Careful consideration is made in this study for how the stream is assessed however, both values are included in the macroinvertebrate results below. Table 2 provides the calculation standardization values used for each calculation.

Metric	Metric Standardization Values			
Metric	Smaller Streams	Larger Streams		
Total Taxa Richness	33	31		
EPT Taxa Richness	19	16		
Beck's Index	38	22		
Hilsenhoff Biotic Index	1.89	3.05		
Shannon Diversity	2.86	2.86		
Percent Sensitive Individuals	84.5	66.7		

Table 2: Metric standardization values for small and large streams (Shull & Pulket, 2018).

Table 3 shows the process for index calculations to ultimately obtain an IBI for each sampling site. The averaged sum of these specific metric equations constructs an IBI, which then can be related to reflect the ecology and impacts to the aquatic community being studied.

Table 3: Index calculation process for freestone riffle/run streams (Shull & Pulket, 2018).

Metric	Standardization Equation (using small-stream standardization values)	(using small-stream standardization values) Metric Value				
Total Taxa Richness	(Observed value / 33)*100	(Observed value / 33)*100				
EPT Taxa Richness	(Observed value / 19)*100					
Beck's Index	(Observed value / 38) *100					
Hilsenhoff Biotic Index	[(10-observed value) / (10-1.89)] *100					
Shannon Diversity	(Observed / 2.86)*100					
Percent Sensitive Individuals	(Observed value / 84.5)*100					
	Average of adjusted standardized	metric score	es = IBI Score =			

Aquatic Life Use Attainment Benchmarks

PADEP implemented a multi-tiered benchmark decision flowchart (Figure 2) for the decision process of assessing if a wadeable, freestone, riffle-run stream has achieved its attainment. The simplified matrix should guide most decisions however; situations exist where the simplified matrix will not apply exactly as outlined. For further clarification on the Aquatic Life Uses, 25 Pa. Code § 93.3 offers the water quality criteria defined by the Pennsylvania Water Quality Standards.

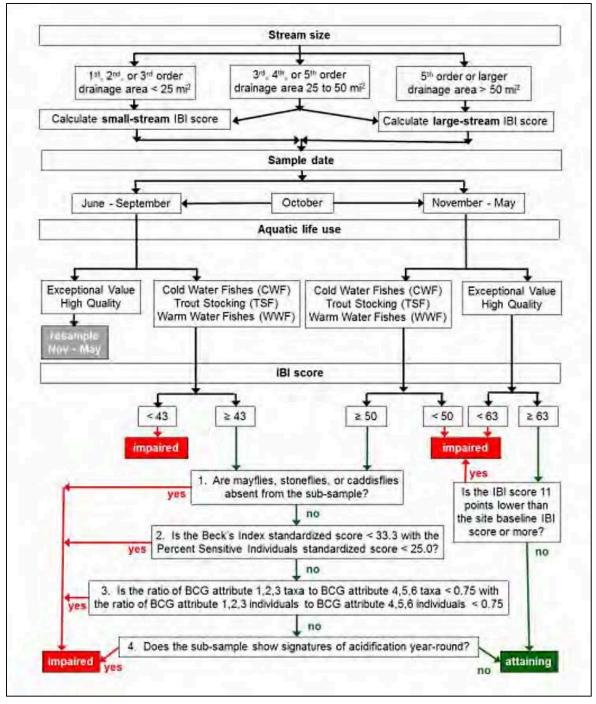


Figure 1: Aquatic Life Use Simplified Assessment Schematic (Shull & Pulket, 2018).

Considerations for the stream must be made prior to analyzing the IBI score and is shown in Figure 2.

- **Stream Size:** This is based on considerations given by DEP in the *Assessment Methodology for Rivers and Streams* (2018) and discussed above.
- Sample Date: The Monroe County water quality study is conducted annually between April and May.
- Aquatic Life Use: The stream designated use is defined in 25 Pa. Code § 93.9 and the existing use is defined in PADEP's *Existing Use Classification* (2020). These are noted prior to approaching this benchmark.

For samples collected in Exceptional Value (EV) or High Quality (HQ) streams, a score of \geq 63 results in ALU attainment if the IBI score is not lower than the baseline when available. A score of < 63 means that the stream was potentially not attaining its Aquatic Life Use when it was sampled. For streams designated Cold Water Fishery (CWF), Trout Stocked Fishery (TSF), or Warm Water Fishery (WWF), an IBI score < 50 means that the stream was potentially not attaining its Aquatic Life Use when it was sampled. An IBI score \geq 50 requires the following additional evaluation to determine attainment (Shull & Pulket, 2018).

- 1. Are mayflies, stoneflies, or caddisflies absent from the sub-sample? These organisms are typically found in most healthy streams therefore if any or all of these orders are absent, it could indicate some sort of impact to the stream. Note that this question does not have to be applied to samples from larger streams and samples collected between June and September, but must be applied to small stream samples collected between November and May.
- Is the standardized metric score for the Beck's Index metric < 33.3 with the standardization metric score for the Percent Sensitive Individuals metric < 25.0? This serves as a double check that the sample has substantial richness and abundance of the most sensitive organism.
- 3. Is the ratio of Biological Condition Gradient (BCG) attribute 1, 2, 3 <u>taxa</u> to BCG attribute 4, 5, 6 <u>taxa</u> < 0.75 with the ratio of BCG attribute 1, 2, 3 <u>individuals</u> to BCG attribute 4, 5, 6 <u>individuals</u> < 0.75? This evaluates the balance of pollution tolerant organisms with sensitive organisms in terms of taxonomic richness and organismal abundance. This question must be applied to small-stream samples collected between November and May, but does not have to be applied to samples from larger streams and samples collected between June and September.</p>
- 4. Does the sub-sample show signatures of acidification year-round? The primary acidification signatures in a sub-sample include low mayfly abundance and low mayfly diversity (i.e., scarce mayfly individuals and few mayfly taxa), especially when combined with high abundance of Amphinemura and/or Leuctra stoneflies, occasionally combined with high abundance of Simuliidae and/or Chironomidae individuals. This information can be difficult to determine if low pH conditions are natural, so sampling water chemistry and/or fish communities can inform the assessment. With this protocol, PADEP will only list impaired sites that show persistent acidification signatures year-round (Shull & Pulket, 2018).

Wadeable Multihabitat Stream

The metrics used to evaluate the macroinvertebrate population in multihabitat streams exhibited a strong ability to distinguish between pristine and heavily impacted conditions of various low gradient habitats while measuring different aspects of the benthic macroinvertebrate communities.

Multihabitat stream macroinvertebrate collection is conducted with a D-framed net with 500 μ m mesh. A 100-meter reach is chosen which best represents the five habitat types described in the methods section and in Table 4 (Shull & Lookenbill, 2018). Once the ten samples are obtained, each sample is composited into one container preserved with 95% ethanol in the field and transported to the contracted entomologist for enumeration and identification (Shull & Lookenbill, 2018).

Habitat Type	Description	Sample Technique
Cobble/Gravel Substrate	Stream bottom areas consisting of mixed gravel and larger substrate particles.	Place the net on the substrate near the downstream end of an area of gravel or larger substrate particles and simultaneously pushing down on the net while pulling it in an upstream direction with adequate force to dislodge organisms.
Snag	Submerged sticks, branches, and other woody debris that appears to have been submerged long enough to be adequately colonized.	The net is placed immediately downstream of the snag in an area where water is flowing; The snag is then kicked in a manner such attached organisms are dislodged.
Coarse Particulate Organic Matter (CPOM)	Mix of plant parts (leaves, bark, twigs, seeds, etc.) that have accumulated on the stream bottom in "depositional" areas of the stream channel.	Pass the net along a 30in path through the accumulated organic material to collect the material and its associated aquatic macroinvertebrates.
Submerged Aquatic Vegetation (SAV)	Rooted aquatic macrophytes.	Draw the net in an upstream direction along a 30in path through the vegetation; Efforts should be made to avoid collecting stream bottom sediments.
Sand/Fine Sediment	Stream bottom areas that are composed primarily of sand, silt, and/or clay.	Bump and tap the net along the substrate along a 30in path.

Table 4: Habitat Types and Field Sampling Techniques (Shull & Lookenbill, 2018).

The following metrics and analyses are from Shull and Pulket (2018) wadeable multihabitat stream macroinvertebrate assessment method in PADEP's *Assessment Methodology for Rivers and Streams*:

Total Taxa Richness

Total taxa richness is similar to the freestone riffle/run metric. This metric is the count of the total number of taxa in a sub-sample.

EPT Taxa Richness

Similar to the freestone riffle/run metric, this metric is the count of the number of taxa belonging to the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT) in a sub-sample.

Beck4

Beck4 is a weighted taxa richness measure. It is based on Hilsenhoff Biotic Index Scores which measures the pollution tolerance of an organism on a scale of zero to ten, where the organisms' tolerance level decreases with score. This is chosen because it better represents low-gradient streams. For Beck4, taxa with a HBI score of 0 or 1 are given 2 points and HBI sco res of 2, 3, or 4 are given 1 point.

Shannon Diversity

Similar to the freestone riffle/run metric, it measures taxonomic richness and evenness of individuals across taxa of a sub-sample. When there is increased stress on a stream ecosystem, this metric will decrease.

Number of Caddisfly Taxa

The metric is the sum of the Caddisfly taxa present in the subsample.

Number of Mayfly Taxa

The metric is the sum of the Mayfly taxa present in the subsample (Shull & Pulket, 2018).

Table 5 shows the process for index calculations to ultimately obtain an IBI for each sampling site. The sum of these specific metric equations constructs an IBI, which then can be related to reflect the ecology and impacts to the aquatic community being studied.

Metric	Adjusted Metric Score Maximum = 100			
Total Taxa Richness				
EPT Taxa Richness				
Beck4				
Shannon Diversity				
# of Caddisfly Taxa				
# of Mayfly Taxa				
	Average of adjusted stand	dardized metric scor	es = IBI Score =	

Table 5: Index calculation process for multihabitat streams (Shull & Pulket, 2018).

Aquatic Life Use Attainment Benchmarks

Aquatic Life Use for multihabitat low gradient has a benchmark of 55 therefore, if the score is \geq 55 the stream has reached attainment, and if the score is < 55 the sample reach has not achieved attainment.

Precision Quantification

Two sampling locations were replicated to verify accuracy and minimize variability. One replicate site was conducted for freestone riffle/run habitat and the other was conducted on a mulithabitat stream. This also complies with the PADEP's quality assurance manual to verify identification work performed on macroinvertebrates.

Quality Assurance

Water samples were stored in coolers with ice packs in order for stabilization and then transported to EPA certified Microbac Laboratories. The specifics of the chemical parameters are discussed in Appendix A of this report. Data quality requirements were maintained in the field throughout the collections. Calibration of field equipment was performed daily.

Section IV. Physical Habitat Evaluation

PA DEP Physical Habitat Evaluation Method

The habitat assessment is a modification of the habitat evaluation methods from the USEPA *Rapid Bioassessment Protocols*. It is used to evaluate key physical characteristics of the available habitat and conditions to aquatic biota which impacts the community structure and composition. The parameters are scored on a scale of 1 - 20, where 20 represents the most optimal conditions for that category. The following parameters are directly based from the Shull and Lookenbill (2018) *Water Quality Monitoring Protocols for Streams and Rivers* and is followed by examples of the data sheets from the protocols:

Riffle/Run Habitat Evaluation Parameters

- 1. Instream Fish Cover The percent makeup of the substrate that provides refuge for a variety of fish.
- 2. Epifaunal Substrate Evaluates the riffle quality relative to stream width and the abundancy of dominant substrate materials.
- 3. Embeddedness This evaluates the extent to which gravel/cobble/or boulders are covered by smaller particle substrate.
- 4. Velocity Depth Regimes Evaluates the presence of all four depth regimes in riffle/run habitat.
- 5. Channel Alteration Evaluates the extent of channelization, dredging, or any other large-scale changes to the shape of the stream channel has occurred that are detrimental to the habitat.
- 6. Sediment Deposition This parameter looks at islands, point bars, or deposition in pools to estimate the extent of sediment deposits.
- 7. Riffle Frequency Estimates the frequency of riffle occurrence based on stream width.
- 8. Channel Flow Status Evaluates the flow conditions relative to bank height and width and the exposed channel substrate.
- 9. Condition of Banks This parameter looks for signs of erosion or the potential for erosion on the stream bank using a bankfull delineation.
- 10. Bank Vegetative Protection Assesses the extent of stream bank covered by vegetation which provides stabilization through root coverage.
- 11. Grazing or Other Disruptive Pressures This parameter evaluate the impact to the surrounding area by human activities.
- 12. Riparian Vegetative Zones Estimates the width of the riparian zone from the edge of the stream bank out through the riparian zone. Assesses the presence of roads, parking lots, lawns, etc., that decreases the riparian zone length.

Riffle/Run Habitat Evaluation Form

1. Instream Cover (Fish) Greater than 50% mix of boulder, cobble, submerged logs, undercut banks, or other stable habitat, 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 10 -30% mix of boulder, cobble, or other stable habitat, habitat availability less than desirable. Less than 10 boulder, cobble, stable habitat availability less than desirable. 2. Epifaunal Substrate Well-developed riffle and run; riffle is as wide as stream and length exteands two times the width of stream; abundance of cobble, Riffle is as wide as stream width; gravel abundance of cobble, common. Run area may be lacking; riffle not as wide as stream and its length abundance of cobble, boulders and bedrock prevalent; some cobble present. Riffle is as wide as stream width; gravel abundance of cobble, boulders and gravel common. Run area may be stream and its length abundance of cobble, boulders and bedrock prevalent; some cobble present. Riffle is as wide as stream width; gravel abundance of cobble, boulders and bedrock prevalent; some cobble present. Riffle is as wide as stream width; gravel abundance of cobble, boulders and bedrock prevalent; some cobble present. Riffle is as wide as stream width; gravel abundance of cobble, boulders and bedrock prevalent; some cobble present. Riffle is as wide as stream width; gravel abundance of cobble, boulder particles are 05. Riffle is as wide as stream width; gravel abundance of cobble, boulder particles are 05. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 S 6 5 4 3 4. Velocity/Depth Regimes All four velocity/depth regimes present (slow, stable, present, usually in areas of bridge abutments; evidence of past of bridge abutments; evidence of past of			_
Investigators: Completed By: Parameter Optimal Suboptimal Marginal Po 1. Instream Cover (Fish) Greater than 50% mix of submerged logs, undercut banks, or other stable habitat 30-50% mix of boulder, oulder, cobble, nabitat; adequate habitat; adequate habitat. 10-30% mix of boulder, boulder, cobble, abitat; habitat availability less than Less than 10 boulder, cobble, nabitat; habitat as stream and length externds two times the width of stream; abundance of cobble. Riffle and fravel, cobble, and boulder particles are 0- 25% surrounded by fine- sediment. Run area may be low low prevalent; co- boulders and gravel common. Run area may be stream width; gravel or large boulders and the gravel common. Riffle sta swide as stream and length exteam and length exteam stream and length exteam and length boulder particles are 50- for surrounded by fine- sediment. Gravel, cobble, and boulder particles are 50- for surrounded by fine- sediment. Gravel, cobble, and boulder particles are 50- for surrounded by fine- sediment. <th></th> <th></th> <th>_</th>			_
Parameter Optimal Suboptimal Marginal Po 1. Instream Cover (Fish) Greater than 50% mix of builder, cobble, submerged logs, undercut banks, or other stable habitat. 30-50% mix of boulder, cobble, or other stable habitat; adequate 10-30% mix of boulder, availability less than desirable. Less than 10 builder, cobble, stable habitat. Less than 10 builder, cobble, stable habitat. Ises than 2 builder, cobble, availability less than desirable. Run area may be as stream and length extends two times the width of stream; abundance of cobble. Run area may be as stream and length extends two times the width of stream; abundance of cobble. Run area may be as stream and length as stream and length extends two times the width of stream; abundance of cobble. Run area may be as stream and length as stream and length extends two times the width of stream; abundance of cobble. Run area may be as stream and length abundance of cobble. Run area may be as stream and length as stream and length extends two times the boulders and gravel common. Run area may be as stream and length as stream and length as stream and length abundance of cobble. Run area may be as stream and length as stream and length as stream and length extends two times the boulder particles are 0- 25% surrounded by fine sediment. Run area may be as 7 6 5 4 3 surrounded by fine sediment. Gravel, cobble, and boulder particles are 50- 50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 60- 25% surrounded by fine sediment. Gravel, cobble, and boulder particles are 60- 25% surrounded by fine regimes present (fast- ant finis			
1. Instream Cover (Fish) Greater than 50% mix of boulder, cobble, submerged logs, undercut banks, or other stable habitat. 30-50% mix of boulder, cobble, or other stable habitat, habitat availability less than desirable. 10-30% mix of boulder, cobble, or other stable availability less than desirable. Less than 10 boulder, cobble, availability less than desirable. 2. Epifaunal Substrate Well-developed riffle and run; riffle is as wide as stream and length extends two times the width of stream; abundance of cobble. Riffle is as wide as stream but length is less stream and is length abundance of cobble. Run area may be lacking; riffle not as wide boulders and bedrock prevalent; some cobble present. Riffles or run nonexistent ji boulders and bedrock prevalent; some cobble present. 3. Embeddedness Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Gravel, cobble, and boulder particles are 0- 26% surrounded by fine sediment. Gravel, cobble, and boulder particles are 0- 26% surrounded by fine sediment. Gravel, cobble, and boulder particles are 0- 26% surrounded by fine sediment. Only 2 of the 4 habitat regimes present (slow- deep, slow shallow, fast- deep, fast shallow) Only 3 of the 4 regimes present using, score lower than shallow or slow-shallow if missing other regimes). Ne wembakments present on both banks; and 40 to 80% of stream each channelization is not present. Banks shore gabion or cer gabion or cer g		_	_
(Fish) boulder, cobble, submerged logs, undercut barks, or other stable habitat. cobble, or other stable habitat, dequate habitat, dequate abitat, habitat desirable. cobble, or other stable habitat, habitat adequate habitat. cobble, or other stable habitat, habitat adegrable. boulder, cobble, habitat. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2. Epifaunal Substrate Wel-developed riffe and run; riffie is as wide as stream and length extends two times the width of stream; abundance of cobble. Riffie is as wide as than two times width; is undance of cobble. Riffie is as wide as than two times width; is undance of cobble. Riffie is as wide as than two times width; is undance of cobble. Riffie is as wide as than two times width; is undance of cobble. Riffie is as wide as than two times width; is undance of cobble. Riffie is as wide as than two times width; is undance of cobble. Riffie is as wide as than two times width; is undance of cobble. Riffie is as wide as than two times width; is undance of cobble. Riffie is as wide as than two times width; is undance of cobble. Riffie is as wide as than two times width; is undance of cobble. Riffie is as wide as than two times width; is undance of cobble. Riffie is as wide as than two times width;	oor		
2. Epifaunal Substrate Welt-developed riffie and run; riffie is as wide as stream and length extends two times the abundance of cobble, width of stream; abundance of cobble, abundance of cobble, boulders and gravel common. Run area may be las stream and is length is less than 2 times the stream width; gravel or large boulders and bedrock prevalent; some cobble present. Run area may be las stream and is length is less than 2 times the stream width; gravel or large boulders and bedrock prevalent; some cobble present. Run area may be las stream and is length is less than 2 times the stream width; gravel or large boulders and bedrock prevalent; some cobble present. Run area may be las stream and is length is less than 2 times the stream width; gravel or large boulders and bedrock prevalent; some cobble present. Run area may be las stream and is length is less than 2 times the stream width; gravel or large boulders and bedrock prevalent; some cobble present. Run area may be las stream and is length is less than 2 times the stream width; gravel or large boulders and bedrock prevalent; some cobble present. Run area may be las stream and is length is less than 2 times the stream width; gravel or large boulders and bedrock prevalent; some cobble present. 3. Embeddedness Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50- 50% surrounded by fine sediment. Gravel, cobble, and theory developed more than 76 surrounded by sediment. Dominated by revelop 20 the 4 habitat regimes present (if fast- regimes present (if fast- regimes, score lower than is missing, score lower than is missing, score lower than 16 missing, score lower than 16 missing, score lower than 16 missing other regimes. Dominated by (oble, or oth at; lack of wious.	th	ne
run; riffle is as wide as stream and length is less that two times width; extends two times the width of stream; abundance of cobble. stream two times width; as stream and its length is less than 2 times the stream width; gravel or large boulders and bedrock prevalent; some cobble present. nonexistent; thou times width; as stream width; gravel or large boulders and bedrock prevalent; some cobble present. 20 19 18 17 16 15 14 13 12 10 9 8 7 6 5 4 3 3. Embeddedness Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Gravel, cobble, and boulder particles are 0-50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50-5% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50-5% surrounded by fine sediment. Only 3 of the 4 regimes Only 2 of the 4 habitat regimes present (if fast-shallow is regimes present (if fast-shallow if missing other regimes.) Doninated by reacting stream shallow, rast- regimes.) Doninated by reacting stream shallow of stream shallow of stream shallow of stream shallow of stream reach channelization, i.e., dredging greater than 20 yr.) may be present, but recent channelization is not present. No channelized and channelization is not present. New embankments gravel od of stream reach channelized and chan		_	
3. Embeddedness Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment. Gravel, cobble, and boulder part	large d bedrock	k	
boulder particles are 0- 25% surrounded by fine sediment.boulder particles are 25- 50% surrounded by fine sediment.boulder particles are 50- 75% surrounded by fine sediment.boulder particles are 50-4. Velocity/Depth RegimesAll four velocity/depth regimes present (slow- deep, fast shallow)Only 3 of the 4 regimes present if fast-shallow is if missing other regimes.)Only 2 of the 4 habitat regimes.Dominated by velocity/depti (usually slow are missing, score lower than if missing other regimes).Dominated by velocity/depti (usually slow are missing, score lower than if missing other regimes).Dominated by velocity/depti (usually slow are missing, score lower than if missing other regimes).Dominated by regimes present (slow- developing (usually low are missing, score lower than if missing other regimes).Dominated by regimes present (slow- developing (greater than 20 yr.) may be present, but recent channelization, is not present.New embankments regimes present by dow of stream reach channeli	3 2		1
4. Velocity/Depth Regimes All four velocity/depth regimes present (slow- deep, slow shallow, fast- deep, fast shallow) Only 3 of the 4 regimes present if fast-shallow is missing, score lower than if missing other regimes.) Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score lower than if missing other regimes). Dominated by velocity/depti (usually slow are missing, score lower than if missing other regimes). 20 19 18 17 16 15 14 13 12 11 0 9 8 7 6 5 4 3 5. Channel Alteration No channelization or dredging present. Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging (greater than 20 yr.) may be present, but recent channelization is not present. New embankments present channelized and disrupted. Banks shored gabion or cer and 40 to 80% of stream reach channelized and disrupted. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 6. Sediment Deposition Little or no enlargement of islands or point bars and less than 5% of the Some new increase in bar information, mostly form coarse gravel; 5- Moderate deposition of new gravel coarse sand on old and new bars; 30- Heavy depos	icles are 5% by fine		
Regimesregimes present (slow- deep, slow shallow, fast- deep, fast shallow)present if fast-shallow is missing, score lower than if missing other regimes.)regimes present (if fast- shallow or slow-shallow are missing, score lower than if missing other regimes).velocity/depti (usually slow are missing, score lower than if missing other regimes).201918171615141312111098765435. Channel Alteration dredging present.No channelization or dredging present.Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging (greater than 20 yr.) may be present, but recent channelization is not present.New embankments present channelization disrupted.Banks shored gabion or cer 80% of the st channelization201918171615141312111098765436. Sediment DepositionLittle or no enlargement of islands or point bars and less than 5% of theSome new increase in bar information, mostly and less than 5% of theSome new increase in bar information, mostly on old and new bars; 30-Heavy depos material incre development,			Ĵ
5. Channel AlterationNo channelization or dredging present.Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging (greater than 20 yr.) may be present, but recent channelization is not present.New embankments present on both banks; and 40 to 80% of stream reach channelized and disrupted.Banks shored gabion or cer 80% of the st channelized and disrupted.20191817161514131211109876543DepositionLittle or no enlargement of islands or point bars and less than 5% of theSome new increase in bar information, mostly from coarse gravel; 5-Moderate deposition of new gravel coarse sand on old and new bars; 30-Heavy depos material increase	th regime	Ð	
dredging present.present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging (greater than 20 yr.) may be present, but recent channelization is not present.present on both banks; and 40 to 80% of stream reach channelized and disrupted.gabion or cer 80% of the st channelized and disrupted.20191817161514131211109876543Exercise of basic dredging (greater than 20 yr.) may be present, but recent channelization is not present.20191817161514131211109876543BepositionOf islands or point bars and less than 5% of the and less than 5% of theSome new increase in bar information, mostly from coarse gravel; 5-Moderate deposition of new gravel coarse sand on old and new bars; 30-Heavy depos material increase	3 2	e'	1
201918171615141312111098765436. Sediment DepositionLittle or no enlargement of islands or point bars and less than 5% of the Some new increase in bar information, mostly from coarse gravel; 5-Moderate deposition of new gravel coarse sand on old and new bars; 30- development;	ement over stream read		
6. Sediment Deposition Deposition Little or no enlargement of islands or point bars and less than 5% of the from coarse gravel; 5- Deposition of and new bars; 30- development;	3 2		1
bottom affected by sediment deposition.	eased bar it; more tha oottom quently; t absent du	ar ha du	a U

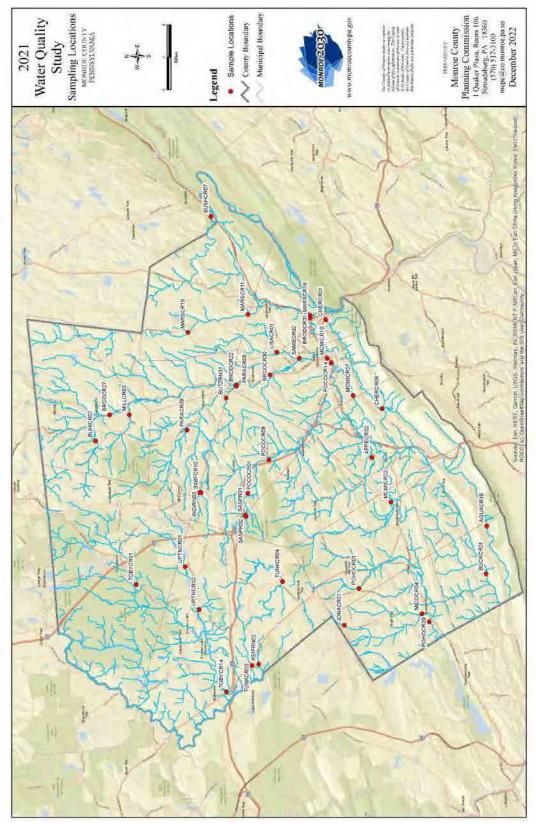
Parameter	Optimal	Suboptimal	Marginal	Poor
7. Riffle Frequency	Occurrence of riffles relatively frequent; distance between riffles divided by the width of the stream equals 5 to 7; variety of habitat.	Occurrence of riffies infrequent; distance between riffles divided by the width of the stream equals 7 to 15.		
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
8. Channel Flow Status	Water reaches base of both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.		Very little water in channel and mostly present as standing pools.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
9. Condition of Banks	Banks stable; no evidence of erosion or bank failure.	Moderately stable; infrequent, small areas of erosion mostly healed over.		Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; on side slopes, 60-100% of bank has erosional scars.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
10. Bank Vegetative Protection	More than 90% of the stream bank surfaces covered by vegetation.	70-90% of the stream bank surfaces covered by vegetation.	50-70% of the stream bank surfaces covered by vegetation.	Less than 50% of the stream bank surfaces covered by vegetation.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1.
11. Grazing or Other Disruptive Pressure	Vegetative disruption through grazing or mowing is minimal or not evident; almost all plants allowed to grow naturally.	Disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	patches of bare soll or closely cropped vegetation common; less than one-half of the	Disruption of stream bank vegetation is very high; vegetation has been removed to 2 inches or less in average stubble height.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
12. Riparian Vegetative Zone	Width or riparian zone >18 meters; human activities (i.e. parking lots, roadbeds, clear- cuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	12 meters; human	Width of riparian zone <6 meters; little or no riparian vegetation due to human activities.

TOTAL

_

Low Gradient Habitat Evaluation Parameters

- 1. Epifaunal Substrate/Available Cover Evaluates the riffle quality relative to stream width and the abundancy of dominant substrate materials.
- 2. Pool Substrate Characterization Evaluates the type and condition of bottom substrate found in the pools.
- 3. Pool Variability Assesses the overall mixture of pool types according to size and depth.
- 4. Sediment Deposition This parameter looks at islands, point bars, or deposition in pools to estimate the extent of sediment deposits.
- 5. Channel Flow Status Evaluates the flow conditions relative to bank height and width and the exposed channel substrate.
- 6. Channel Alteration Evaluates the extent of channelization, dredging, or any other large-scale changes to the shape of the stream channel has occurred that are detrimental to the habitat.
- 7. Condition of Banks This parameter looks for signs of erosion or the potential for erosion on the stream bank using a bankfull delineation.
- 8. Bank Vegetative Protection Assesses the extent of stream bank covered by vegetation which provides stabilization through root coverage.
- 9. Riparian Vegetative Zone Estimates the width of the riparian zone from the edge of the stream bank out through the riparian zone. Assesses the presence of roads, parking lots, lawns, etc., that decreases the riparian zone length.


Multihabitat, Low Gradient Habitat Evaluation Form

Waterbody Name:	G	IS Key (YYYYMMDD-hhmm-	User):	
Location:			/	
Investigators:		Completed	d By:	
Parameter	Optimal	Suboptimal	Marginal	Poor
1. Epifaunal Substrate/Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale)	removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat o vegetation.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.		Shallow pools much more prevalent than deep pools.	Majority of pools small shallow or pools absent.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
4. Sediment Deposition	or point bars and less than 20% of the bottom affected by sediment deposition	of the bottom affected; slight deposition in pools.	sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
5. Channel Flow Status	both lower banks and minimal amount of	available channel; or <25% of channel		Very little water In channel and mostly present as standing pools.

Parameter	Optimal	Suboptimal	Marginal	Poor
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr.) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
7. Condition of Banks	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly sealed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
	streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.		Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in stubble height.
9. Riparian		15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Vegetative Zone	>18 meters; human activities (i.e. parking lots, roadbeds, clear-	12-18 meters; human activities have impacted zone only minimally.	6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters; little or no riparian vegetation due to human activities.

Section V. Sample Locations & Results

Site Location Map

Location Descriptions

Site ID	Stream Name	Location	Municipality	Latitude	Longitude
AQUACR19	Aquashicola Creek	315 meters east from intersection of UpperSmith Gap Rd and Camp Hill Rd	Eldred	40.845611	75.394982
BUCKCRO1	Buckwha Creek	200 meters west of Chestnut Ridge Rd bridge	Eldred	40.847275	-75.451532
POHOCROL	Pohopoco Creek	330m southeast from intersection of Merwinsburg Rd. and Burger Hollow Rd.	Chestnuthill	40.951684	-75.465
POHOCK29	Pohopoco Creek	700 meters west on Whitey B Ln, from intersection of Whitey B Ln, and Rt. 209.	Polk	40.89951	-75.506215
MIDDCR04	Middle Creek	Downstream of observation deck on Cliff Woodring Trail.	Polk	40.905822	-75.496614
ONACRO1	Jonas Creek	150m north of the Laurel Ln cul-de-sac	Polk	40.97567	-75.507843
APPECR02	Appenzell Creek	Near residential housing, 160m west of the Foundry St. bridge.	Hamilton	40,546838	-75.310513
MCMICR22	McMichael Creek	115m south of intersection of Moilhaney Rd. and Kennel Rd.	Chestouthill	40,930902	75.363567
MCMICR37	McMichael Creek	Hickory Valley Park 60m southeast from parking area.	Stroud	40.962041	-75.236508
WGWIGAD/	MEMBBOOL CICCK	makery vericy rate can securicest new pricing erco.	Delaware	40,302041	15.2.10.50
CHERCRO1	Cherry Creek	Edge of the Woods OutFilters 100m from the intersection of 611 and Broad St.	Water Gap	40.984712	75.145846
CHERCROS	Cherry Creek	25 meters south of bridge on Kemmerlown Rd.	Hamilton	40,93657	-75.252765
CHERCROSR	Cherry Creek	25 meters south of bridge on Kemmertown Rd.	Hamilton	40,93657	-75-252765
BRODCR27	Brodhead Creek	170 meters northeast of Pasold Farm Dr. parking area.	sarrett	41.180941	75.25091
BRODCR27R	Brodhead Creek	170 meters northeast of Pasold Farm Dr. parking area.	Sarrett	41.180941	75.25091
MILLORDB	Mill Creek	560m west of instersection of Sand Spring Rd. and Mill Creek Rd.	Barrett	41.163201	-75.251528
BUHICR07	Buck Hill Creek	165 meters upstream of Buck Hill Golf Club off of Cresco Rd.	Barrett	41.194403	-75.281357
BRODCR22	Brodhead Creek	Sugar Cane Ln. access off of Rt. 191 Bridge upstream of confluence of PARACR08.	Stroud	41,066523	-75.220216
PARACROS	Paradise Creek	Sugar Cane Ln. access off of Rt. 191 Bridge. 150m west from Sugar Cane Rd.	Stroud	41.066498	75.221395
BRODCR30	Brodhead Creek	120 meters southeast of Rt. 191 bridge near intersection of Rt.191 and Rt. 447	Stroud		
				41.036093	-75.209176
BRODCR31	Brodhead Creek	55 meters east of Paper Mill Rd near entrance of paper mill	Smithfield	40.998746	-75.143353
BUTZRN01	Butz Run	1.14 miles down Sylvan Cascades Rd from intersection of Rt. 191	Paradise Middle	41.076071	-75.235002
BUSHCR07	Bushkill Creek	340 meters north of Route 209 through ROW.	Smithfield Middle	41.084861	75.019417
MARSCR11	Marshalls Creek	385 meters north of intersection of Marshalls Creek Rd. and Golfcart Rd.	Smithfield	41.054246	75.13672
MARSCRIB	Marshalls Creek	Next to Ministrik Hotel parking lot off of Post Office Rd.	Smithfield	40,998555	75.139952
MARSCR19	Marshalls Creek	40 meters north of one land bridge on Tallyrand Dr.	Middle	41.108415	-75.155693
ISACR21	Little Sambo Creek	Downstream of Take Valhalla	Smithfield	41.029313	-75.182482
SAMBCR02	Sambo Creek	45m east of Levee Loop Trail, north of John Konawalick Field	Stroudsburg	41.009419	75.190549
POCOCROS	Pocono Creek	65m north of Old Mill Rd. bridge.	Pocono	41.039252	-75.309729
POCOCR14 SWIFCR10	Pocono Creek Swiftwater Creek	20m south from S. 10th St and Ann St. 25m north of Manor Dr. bridge.	Stroudsburg Pocono	40.981165	75.346355
U. Latrouters		150 meters north of Manor Dr. Bridge upstream of confluence with Swiftwater Creek.		100000	
POCOCRD1	Pocono Creek	300m south on Camelback Rd from Intersection of Camelback Rd, and Wilke Rd.	Pocono	41.10221	-75.346358
SASPRNOI	Sand Spring	600m west of Wilke Rd. dead end.	Jackson	41.061595	-75.3466
		700m west of Wilke Rd. dead end.	Jackson		-
SASPRNO2	Sand Spring Tobyhanna Creek	Upstream of 423 bridge.	Coolbaugh	41.061234 41.1613287	-75.375798
	Tobyhanna Creek		Tobyhanna	and the second second	-75.583083
TOBYCR14	Tunkhannock Creek	S0m east of Rt. 115 bridge near Austin T. Blakeslee Natural Area. 160m north of Tunkhannock Fishing Association Parking area off SR115.	Tunkhannock	41.082791	
TUNKCRO3				41.059541	-75.552735
TUNKCR04	Tunkhannock Creek Upper Tunkhannock	Off Fire Ln. Near Bethlehem Water Authority dam	Tunkhannock	41.029496	-75.451954
UPTNCR01	Creek	Between Stillwater Lake and Lake Naomi near 201 Tanglewood Dr.	Tobyhanna	41,116941	-75.433578
UPTNCR02	Upper Tunkhannock Creek	50 meters southwest of Old Route 940 Bridge	Tobyhanna	41.105984	-75,487852
KEIPRN02	Keiper Bun	70 meters east of Rt. 903 bridge, upstream of bridge	Tunkhannock	41.053224	-75,552658

Site Summary Sheets

Site Summary Sheet: AQUACR19

Stream Name	Aquashicola Creek	Latitude	40.845611
Date Sampled	4/5/2021	Longitude	-75.394982
Time Sampled	8:40:00 AM	Municipality	Eldred
Drainage Area (sq mi)	12.7	Habitat Type	Low Gradient
Location Description	315 meters east from intersect	ion of Upper Smith Gap Rd and	Camp Hill Rd

Field Measurements

pH	7.53
Dissolved Oxygen (%)	97.8
Dissolved Oxygen (mg/L)	11.51
Conductivity (µS/cm)	138.0
Total Dissolved Solids (mg/L)	89.665
Temperature (°C)	8.2

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.51	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	9.73	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	57.4	pH (Lab)	7.2
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<2.00	Calcium (mg/L)	16.4
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	-
Nitrite as N (mg/L)	<0.13	Magnesium (mg/L)	3.98
Total Dissolved Solids (Lab) (mg/L)	54.0	Alkalinity to pH 4.5 (mg CaCO3/L)	42
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Cobble/Gravel	2
Snag	2
СРОМ	2
Submerged Aquatic Vegetation	2
Sand/Fine Sediment	2

Macroinvertebrate Metrics

Total Taxa Richness	27
EPT Taxa Richness	20
Beck4	23
Shannon Diversity Index	2.40
# of Caddisfly Taxa	11
# of Mayfly Taxa	6
Index of Biotic Integrity	97.6

Pool Substrate Characterization + Sediment Deposition	30
Bank Vegetative Protection + Bank Stability	31
Habitat Assessment Score (Overall)	140

Site Summary Sheet: APPECR02

Stream Name	Appenzell Creek	Latitude	40.946838	
Date Sampled	4/12/2021	Longitude	-75.310513	
Time Sampled	9:15:00 AM	Municipality	Hamilton	
Drainage Area (sq mi)	15.1	Habitat Type	Riffle/Run	
Location Description	Near residential housing, 160	m west of the Foundry St. bridge.		

Field Measurements pH 7.44 Dissolved Oxygen (%) 98.5 Dissolved Oxygen (mg/L) 10.98 Conductivity (µS/cm) 113.0 Total Dissolved Solids (mg/L) 73.586 Temperature (°C) 10.5

Lab Chemistry Results

1.94	Phosphorus as P (mg/L)	<0.020
18.3	Temperature (Lab) (°C)	-
28.4	pH (Lab)	7.1
<0.30	Aluminum (mg/L)	1-
0.50	Calcium (mg/L)	7.64
ÎF.	Iron (mg/L)	TE
<0.03	Magnesium (mg/L)	2.27
127	Alkalinity to pH 4.5 (mg CaCO3/L)	12.6
<1.25	Biochemical Oxygen Demand (mg/L)	<4.0
	18.3 28.4 <0.30	18.3 Temperature (Lab) (°C) 28.4 pH (Lab) <0.30

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	20
EPT Taxa Richness	12
Beck's Index	24
Shannon Diversity Index	1.78
Hilsenhoff Biotic Index	4.01
Percent Sensitive Individuals	42.0
Index of Biotic Integrity	62.0

Embeddedness +	29
Sediment Deposition	
Condition of Banks	26
+	
Vegetative Protection	
Habitat Assessment Score	183
(Overall)	

Stream Name	Brodhead Creek	Latitude	41.180941	
Date Sampled	4/6/2021	Longitude	-75.25091	
Time Sampled	11:54:00 AM	Municipality	Barrett	
Drainage Area (sq mi)	30.4	Habitat Type	Riffle/Run	
Location Description	170 meters northeast of Pasc	old Farm Dr. parking area.		

Field Measurements pH 7.16 Dissolved Oxygen (%) 101.0 Dissolved Oxygen (mg/L) 11.95 Conductivity (µS/cm) 63.0 Total Dissolved Solids (mg/L) 40.837 Temperature (°C) 8.0

Lab Chemistry Results

1) 21	Phosphorus as P (mg/L)	<0.020
9.80	Temperature (Lab) (°C)	-
13.4	pH (Lab)	6.8
<0.30	Aluminum (mg/L)	-
<0.80	Calcium (mg/L)	3.69
1F	Iron (mg/L)	TF
<0.05	Magnesium (mg/L)	1,01
55.0	Alkalinity to pH 4.5 (mg CaCO3/L)	8.4
<1.25	Biochemical Oxygen Demand (mg/L)	<4.0
	9.80 13.4 <0.30 <0.80 - <0.05 55.0	9.80 Temperature (Lab) (°C) 13.4 pH (Lab) <0.30

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	24
EPT Taxa Richness	14
Beck's Index	31
Shannon Diversity Index	2.43
Hilsenhoff Biotic Index	2.38
Percent Sensitive Individuals	71.6
Index of Biotic Integrity	81.9

Embeddedness + Sediment Deposition	35
Condition of Banks + Vegetative Protection	35
Habitat Assessment Score (Overall)	197

Stream Name	Brodhead Creek	Latitude	41.180941	
Date Sampled	4/6/2021	Longitude	-75.25091	
Time Sampled	11:50:00 AM	Municipality	Barrett	
Drainage Area (sq mi)	30.4	Habitat Type	Riffle/Run	
Location Description	170 meters northeast of Pasc	ld Farm Dr. parking area.		

Field MeasurementspH7.13Dissolved Oxygen (%)101.5Dissolved Oxygen (mg/L)12.00Conductivity (µS/cm)63.0

40.837

8.1

Total Dissolved Solids (mg/L)

Temperature (°C)

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.99	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	9.84	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	14.9	pH (Lab)	6.9
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	4.13
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	1,11
Total Dissolved Solids (Lab) (mg/L)	129	Alkalinity to pH 4.5 (mg CaCO3/L)	8.4
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	22
EPT Taxa Richness	17
Beck's Index	28
Shannon Diversity Index	2.37
Hilsenhoff Biotic Index	2.76
Percent Sensitive Individuals	63.3
Index of Biotic Integrity	79.5

Embeddedness + Sediment Deposition	35
Condition of Banks + Vegetative Protection	35
Habitat Assessment Score (Overall)	197

Stream Name	Brodhead Creek	Latitude	41.066523	
Date Sampled	4/6/2021	Longitude	-75.220216	
Time Sampled	10:15:00 AM	Municipality	Stroud	
Drainage Area (sq mi)	70.6	Habitat Type	Riffle/Run	
Location Description	Sugar Cane Ln. access off of	Rt. 191 Bridge upstream of conflu	ience of PARACR08.	

Field Measurements pH 7.14 Dissolved Oxygen (%) 102.9 Dissolved Oxygen (mg/L) 12.68 Conductivity (µS/cm) 68.0 Total Dissolved Solids (mg/L) 44.271 Temperature (°C) 6.4

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.66	Phosphorus as P (mg/L)	0.263
Chloride (mg/L)	10.3	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	15.7	pH (Lab)	7
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	4.31
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	1.19
Total Dissolved Solids (Lab) (mg/L)	48.0	Alkalinity to pH 4.5 (mg CaCO3/L)	<6.0
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	3
Slow/Deep	1
Fast/Deep	1

Macroinvertebrate Metrics

Total Taxa Richness	28
EPT Taxa Richness	18
Beck's Index	29
Shannon Diversity Index	2.54
Hilsenhoff Biotic Index	2.27
Percent Sensitive Individuals	75.4
Index of Biotic Integrity	96.5

Embeddedness + Sediment Deposition	35
Condition of Banks + Vegetative Protection	34
Habitat Assessment Score (Overall)	201

Stream Name	Brodhead Creek	Latitude	41.036093	
Date Sampled	4/6/2021	Longitude	-75.209176	
Time Sampled	9:00:00 AM	Municipality	Stroud	
Drainage Area (sq mi)	122	Habitat Type	Riffle/Run	
Location Description	120 meters southeast of Rt. 1	91 bridge near intersection of Rt.	191 and Rt. 447	

Field Measurements 7.27 pН Dissolved Oxygen (%) 102.5 12.58 Dissolved Oxygen (mg/L) Conductivity (µS/cm) 118.0 Total Dissolved Solids (mg/L) 76.944 6.5 Temperature (°C)

Lab Chemistry Results

Total Organic Carbon (mg/L)	2.01	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	22	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	10.5	pH (Lab)	6.8
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	ŀ
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	6.71
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	1
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	1.75
Total Dissolved Solids (Lab) (mg/L)	93.0	Alkalinity to pH 4.5 (mg CaCO3/L)	10.5
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	2
Fast/Shallow	1
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	27
EPT Taxa Richness	15
Beck's Index	25
Shannon Diversity Index	2.56
Hilsenhoff Biotic Index	3.39
Percent Sensitive Individuals	56.2
Index of Biotic Integrity	91.6

Embeddedness +	34
Sediment Deposition	
Condition of Banks	32
+ Vegetative Protection	
Habitat Assessment Score (Overall)	183

Stream Name	Brodhead Creek	Latitude	40.998746	
Date Sampled	4/8/2021	Longitude	-75.143353	
Time Sampled	8:25:00 AM	Municipality	Smithfield	
Drainage Area (sq mi)	261	Habitat Type	Riffle/Run	
Location Description	55 meters east of Paper Mill F	Rd near entrance of paper mill		

Field Measurements

pH	7.49
Dissolved Oxygen (%)	100.5
Dissolved Oxygen (mg/L)	11.46
Conductivity (µS/cm)	183.0
Total Dissolved Solids (mg/L)	118.868
Temperature (°C)	9.6

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.47	Phosphorus as P (mg/L)	0.036
Chloride (mg/L)	31.2	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	39.8	pH (Lab)	7.2
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	12.3
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	TF-
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	2.20
Total Dissolved Solids (Lab) (mg/L)	106	Alkalinity to pH 4.5 (mg CaCO3/L)	23.1
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	2
Fast/Shallow	2
Slow/Deep	0
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	21
EPT Taxa Richness	13
Beck's Index	19
Shannon Diversity Index	1.94
Hilsenhoff Biotic Index	4.59
Percent Sensitive Individuals	27.2
Index of Biotic Integrity	70.3

Embeddedness +	22
Sediment Deposition	
Condition of Banks	31
•	
Vegetative Protection	
Habitat Assessment Score	172
(Overall)	

Site Summary Sheet: BUHICR07

Stream Name	Buck Hill Creek	Latitude	41.194403	
Date Sampled	4/14/2021	Longitude	-75.281357	
Time Sampled	8:30:00 AM	Municipality	Barrett	
Drainage Area (sq mi)	5.9	Habitat Type	Riffle/Run	
Location Description	165 meters upstream of Buc	Hill Golf Club off of Cresco Rd.		

Field Measurements pH 6.83 Dissolved Oxygen (%) 95.9 Dissolved Oxygen (mg/L) 11.73 Conductivity (µS/cm) 37.0 Total Dissolved Solids (mg/L) 24.000 Temperature (°C) 6.7

Lab Chemistry Results

Total Organic Carbon (mg/L)	2.81	Phosphorus as P (mg/L)	0.027
Chloride (mg/L)	5.08	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	9.36	pH (Lab)	6.3
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	0.215	Calcium (mg/L)	2.65
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.01	Magnesium (mg/L)	0.67
Total Dissolved Solids (Lab) (mg/L)	67.0	Alkalinity to pH 4.5 (mg CaCO3/L)	<6.0
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habi	tat	Sa	mp	led	
 				11-	

Slow/Shallow	1
Fast/Shallow	3
Slow/Deep	1
Fast/Deep	1

Macroinvertebrate Metrics

Total Taxa Richness	17
EPT Taxa Richness	11
Beck's Index	27
Shannon Diversity Index	2.13
Hilsenhoff Biotic Index	1.16
Percent Sensitive Individuals	90.9
Index of Biotic Integrity	75.8

Embeddedness + Sediment Deposition	37
Condition of Banks + Vegetative Protection	36
Habitat Assessment Score (Overall)	217

Site Summary Sheet: BUCKCR01

Stream Name	Buckwha Creek	Latitude	40.847275	
Date Sampled	4/5/2021	Longitude	-75.451532	
Time Sampled	9:30:00 AM	Municipality	Eldred	
Drainage Area (sq mi)	19.5	Habitat Type	Riffle/Run	
Location Description	200 meters east of Chestnut	Ridge Rd bridge		

Field Measurements pH 7.17 Dissolved Oxygen (%) 101.7 Dissolved Oxygen (mg/L) 12.42 Conductivity (µS/cm) 101.0 Total Dissolved Solids (mg/L) 65.404 Temperature (°C) 6.7

Lab Chemistry Results

Total Organic Carbon (mg/L)	0.89	Phosphorus as P (mg/L)	0.025
Chloride (mg/L)	11.6	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	31	pH (Lab)	7.2
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<2.00	Calcium (mg/L)	8.29
Nitrate-Nitrite as N (mg/L)	6	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.13	Magnesium (mg/L)	2.51
Total Dissolved Solids (Lab) (mg/L)	87.0	Alkalinity to pH 4.5 (mg CaCO3/L)	14.7
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	2
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	1

Macroinvertebrate Metrics

Total Taxa Richness	23
EPT Taxa Richness	13
Beck's Index	20
Shannon Diversity Index	2.42
Hilsenhoff Biotic Index	4.19
Percent Sensitive Individuals	37.5
Index of Biotic Integrity	65.2

Embeddedness + Sediment Deposition Condition of Banks + Vegetative Protection	16	
	20	
Habitat Assessment Score (Overall)	159	

Site Summary Sheet: BUSHCR07

Stream Name	Bushkill Creek	Latitude	41.084861	
Date Sampled	4/8/2021	Longitude	-75.019417	
Time Sampled	10:00:00 AM	Municipality	Middle Smithfield	
Drainage Area (sq mi)	120	Habitat Type	Riffle/Run	
Location Description	340 meters north of Route 2	09 through ROW		

Field Measurements pH 7.19 Dissolved Oxygen (%) 104.4 Dissolved Oxygen (mg/L) 12.02 Conductivity (µS/cm) 60.0 Total Dissolved Solids (mg/L) 39.339 Temperature (°C) 9.2

Lab Chemistry Results				
Total Organic Carbon (mg/L)	3.18	Phosphorus as P (mg/L)	0.032	
Chloride (mg/L)	8.18	Temperature (Lab) (°C)	-	
Hardness (mg CaCO3/L)	14.8	pH (Lab)	6.9	
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-	
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	4.21	
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	1-	
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	1.05	
Total Dissolved Solids (Lab) (mg/L)	69.0	Alkalinity to pH 4.5 (mg CaCO3/L)	10.5	
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0	

Habitat Sampled

Slow/Shallow	2
Fast/Shallow	2
Slow/Deep	0
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	29
EPT Taxa Richness	17
Beck's Index	31
Shannon Diversity Index	2.42
Hilsenhoff Biotic Index	2.75
Percent Sensitive Individuals	63.7
Index of Biotic Integrity	95.6

Embeddedness + Sediment Deposition	35
Condition of Banks + Vegetative Protection	35
Habitat Assessment Score (Overall)	201

Site Summary Sheet: BUTZRN01

Stream Name	Butz Run	Latitude	41.076071	
Date Sampled	4/6/2021	Longitude	-75.235002	
Time Sampled	10;54:00 AM	Municipality	Paradise	
Drainage Area (sq mi)	3.7	Habitat Type	Riffle/Run	
Location Description	1.14 miles down Sylvan Cas	scades Rd from intersection of Rt. 1	91	

Field Measurements pH 7.5 Dissolved Oxygen (%) 100.2 Dissolved Oxygen (mg/L) 12.18 Conductivity (µS/cm) 118.0 Total Dissolved Solids (mg/L) 76.770 Temperature (°C) 6.9

Lab Chemistry Results

Total Organic Carbon (mg/L)	2.50	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	17.9	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	29.5	pH (Lab)	7
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	8.94
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	1
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	1.75
Total Dissolved Solids (Lab) (mg/L)	77.0	Alkalinity to pH 4.5 (mg CaCO3/L)	16.8
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow]1
Slow/Deep	2
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	26
EPT Taxa Richness	15
Beck's Index	31
Shannon Diversity Index	2.11
Hilsenhoff Biotic Index	2.17
Percent Sensitive Individuals	81.7
Index of Biotic Integrity	84.4

Embeddedness + Sediment Deposition	36
Condition of Banks + Vegetative Protection	33
Habitat Assessment Score (Overall)	209

Site Summary Sheet: CHERCR01

Stream Name	Cherry Creek	Latitude	40.984712
Date Sampled	4/12/2021	Longitude	-75.145848
Time Sampled	12:25:00 PM	Municipality	Delaware Water Gap
Drainage Area (sq mi)	20.4	Habitat Type	Riffle/Run

Field Measurements		
рН	7.82	
Dissolved Oxygen (%)	96.9	
Dissolved Oxygen (mg/L)	10.76	
Conductivity (µS/cm)	160.0	
Total Dissolved Solids (mg/L)	103.697	
Temperature (°C)	10.7	

Lab Chemistry Results

Total Organic Carbon (mg/L)	5.93	Phosphorus as P (mg/L)	0.038
Chloride (mg/L)	8.98	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	67.4	pH (Lab)	7.3
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	1-
Nitrate as N (mg/L)	<0.40	Calcium (mg/L)	20.6
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	1
Nitrite as N (mg/L)	<0.03	Magnesium (mg/L)	3.87
Total Dissolved Solids (Lab) (mg/L)	146	Alkalinity to pH 4.5 (mg CaCO3/L)	52.5
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

H	lat	bita	t S	ian	npl	ed	

3
0
2

Macroinvertebrate Metrics

Total Taxa Richness	24
EPT Taxa Richness	14
Beck's Index	21
Shannon Diversity Index	2.21
Hilsenhoff Biotic Index	2.41
Percent Sensitive Individuals	75.0
Index of Biotic Integrity	76.9

Embeddedness + Sediment Deposition	32
Condition of Banks + Vegetative Protection	32
Habitat Assessment Score (Overall)	175

Site Summary Sheet: CHERCR06

Stream Name	Cherry Creek	Latitude	40.93657	
Date Sampled	4/12/2021	Longitude	-75.252769	
Time Sampled	11:15:00 AM	Municipality	Hamilton	
Drainage Area (sq mi)	9	Habitat Type	Low Gradient	
Location Description	25 meters south of bridge of	n Kemmertown Rd.		

Field Measurements pH 7.9 Dissolved Oxygen (%) 98.5 Dissolved Oxygen (mg/L) 11.14 Conductivity (µS/cm) 150.0 Total Dissolved Solids (mg/L) 97.825 Temperature (°C) 9.9

Lab Chemistry Results

Total Organic Carbon (mg/L)	3.39	Phosphorus as P (mg/L)	0.024
Chloride (mg/L)	6.37	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	67.2	pH (Lab)	7.4
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	1-
Nitrate as N (mg/L)	<0.40	Calcium (mg/L)	20,4
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	1
Nitrite as N (mg/L)	<0.03	Magnesium (mg/L)	3.94
Total Dissolved Solids (Lab) (mg/L)	123	Alkalinity to pH 4.5 (mg CaCO3/L)	50.4
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

2
3
3
0
2

Macroinvertebrate Metrics

Total Taxa Richness	25
EPT Taxa Richness	18
Beck4	23
Shannon Diversity Index	2.40
# of Caddisfly Taxa	11
# of Mayfly Taxa	6
Index of Biotic Integrity	90.1

Pool Substrate Characterization + Sediment Deposition		
Bank Vegetative Protection + Bank Stability	33	
Habitat Assessment Score (Overall)	147	

Site Summary Sheet: CHERCROGR

Stream Name	Cherry Creek	Latitude	40.93657	
Date Sampled	4/12/2021	Longitude	-75.252769	
Time Sampled	11:15:00 AM	Municipality	Hamilton	
Drainage Area (sq mi)	9	Habitat Type	Low Gradient	
Location Description	25 meters south of bridge of	n Kemmertown Rd.		

Field Measurements		
рН	7.9	
Dissolved Oxygen (%)	98.5	
Dissolved Oxygen (mg/L)	11.14	
Conductivity (µS/cm)	150.0	
Total Dissolved Solids (mg/L)	97.825	
Temperature (°C)	9.9	

Lab Chemistry Results

Total Organic Carbon (mg/L)	3.04	Phosphorus as P (mg/L)	0.025
Chloride (mg/L)	6.43	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	66.8	pH (Lab)	7.3
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<0.40	Calcium (mg/L)	20.3
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.03	Magnesium (mg/L)	3.92
Total Dissolved Solids (Lab) (mg/L)	246	Alkalinity to pH 4.5 (mg CaCO3/L)	50.4
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

3
3
0
2

Macroinvertebrate Metrics

Total Taxa Richness	22
EPT Taxa Richness	17
Beck4	17
Shannon Diversity Index	1.98
# of Caddisfly Taxa	6
# of Mayfly Taxa	8
Index of Biotic Integrity	85.7

Pool Substrate Characterization + Sediment Deposition	27
Bank Vegetative Protection + Bank Stability	33
Habitat Assessment Score (Overall)	147

Site Summary Sheet: INDIRN03

Stream Name	Indian Run	Latitude	41.10221	
Date Sampled	4/7/2021	Longitude	-75.346358	
Time Sampled	8:40:00 AM	Municipality	Pocono	
Drainage Area (sq mi)	1.94	Habitat Type	Riffle/Run	
Location Description	150 meters upstream of co	onfluence with Swiftwater Creek		

Field MeasurementspH7.08Dissolved Oxygen (%)97.5Dissolved Oxygen (mg/L)11.8Conductivity (µS/cm)218.0Total Dissolved Solids (mg/L)142.054Temperature (°C)7.1

Lab Chemistry Results

Total Organic Carbon (mg/L)	0.61	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	51.8	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	40.1	pH (Lab)	6.6
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	10.9
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	3.10
Total Dissolved Solids (Lab) (mg/L)	154	Alkalinity to pH 4.5 (mg CaCO3/L)	10.5
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	12
EPT Taxa Richness	7
Beck's Index	14
Shannon Diversity Index	1.61
Hilsenhoff Biotic Index	2.45
Percent Sensitive Individuals	64.6
Index of Biotic Integrity	56.0

Embeddedness + Sediment Deposition	35
Condition of Banks + Vegetative Protection	23
Habitat Assessment Score (Overall)	194

Site Summary Sheet: JONACR01

Stream Name	Jonas Creek	Latitude	40.97567	
Date Sampled	4/5/2021	Longitude	-75.507843	
Time Sampled	12:50:00 PM	Municipality	Polk	
Drainage Area (sq mi)	2.1	Habitat Type	Riffle/Run	
Location Description	150m north of the Laurel Ln	cul-de-sac		

Field Measurements		
рН	6.54	
Dissolved Oxygen (%)	99.5	
Dissolved Oxygen (mg/L)	11.72	
Conductivity (µS/cm)	87.0	
Total Dissolved Solids (mg/L)	56.501	
Temperature (°C)	8.2	

Lab Chemistry Results

Total Organic Carbon (mg/L)	0.56	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	17.9	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	13.5	pH (Lab)	7
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<2.00	Calcium (mg/L)	3.19
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	
Nitrite as N (mg/L)	<0.13	Magnesium (mg/L)	1.34
Total Dissolved Solids (Lab) (mg/L)	122	Alkalinity to pH 4.5 (mg CaCO3/L)	<6.0
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

H	labi	tat	Sam	pled	

Slow/Shallow	1
Fast/Shallow	3
low/Deep	0
ast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	24
EPT Taxa Richness	16
Beck's Index	34
Shannon Diversity Index	2.59
Hilsenhoff Biotic Index	2.19
Percent Sensitive Individuals	73.0
Index of Biotic Integrity	86.6

Embeddedness +	36
Sediment Deposition	
Condition of Banks	36
+	
Vegetative Protection	
Habitat Assessment Score	212
(Overall)	

Site Summary Sheet: KEIPRN02

Stream Name	Keiper Run	Latitude	41.053224	
Date Sampled	4/14/2021	Longitude	-75.552658	
Time Sampled	10:00:00 AM	Municipality	Tunkhannock	
Drainage Area (sq ml)	1.6	Habitat Type	Riffle/Run	
Location Description	Immediately upstream of SP	R 903 Bridge		

Field Measurements		
рН	6.65	
Dissolved Oxygen (%)	87.1	
Dissolved Oxygen (mg/L)	10.12	
Conductivity (µS/cm)	130.0	
Total Dissolved Solids (mg/L)	84.220	
Temperature (°C)	8.8	

Lab Chemistry Results

Total Organic Carbon (mg/L)	2.51	Phosphorus as P (mg/L)	0.452
Chloride (mg/L)	31.8	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	14.6	pH (Lab)	6.3
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	0.208	Calcium (mg/L)	3.99
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	1
Nitrite as N (mg/L)	<0.01	Magnesium (mg/L)	1.13
Total Dissolved Solids (Lab) (mg/L)	172	Alkalinity to pH 4.5 (mg CaCO3/L)	8.5
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

H	a	bi	ta	1 5	Sa	m	pl	lec	1

Slow/Shallow	1
Fast/Shallow	3
Slow/Deep	0
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	15
EPT Taxa Richness	2.00
Beck's Index	7
Shannon Diversity Index	1.65
Hilsenhoff Biotic Index	5.36
Percent Sensitive Individuals	14.9
Index of Biotic Integrity	34.5

Embeddedness + Sediment Deposition	27
Condition of Banks + Vegetative Protection	34
Habitat Assessment Score (Overall)	179

Site Summary Sheet: LISACR21

Stream Name	Little Sambo Creek	Latitude	41.029353	
Date Sampled	4/14/2021	Longitude	-75.182539	
Time Sampled	11:30:00 AM	Municipality	Smithfield	
Drainage Area (sq mi)	4.8	Habitat Type	Riffle/Run	
Location Description	Downstream of Lake Valhalla			

Field MeasurementspH7.80Dissolved Oxygen (%)112.4Dissolved Oxygen (mg/L)12.26Conductivity (µS/cm)215.0Total Dissolved Solids (mg/L)139.767Temperature (°C)11.5

Total Organic Carbon (mg/L)4.10Phosphorus as P (mg/L)0.373Chloride (mg/L)29.7Temperature (Lab) (°C)-Hardness (mg CaCO3/L)63.7pH (Lab)7.4Ammonia as N (mg/L)<0.30</td>Aluminum (mg/L)-

Lab Chemistry Results

00.7	pri(Lab)	1.4
<0.30	Aluminum (mg/L)	-
0.266	Calcium (mg/L)	21,7
1E	Iron (mg/L)	
<0.01	Magnesium (mg/L)	2.30
208	Alkalinity to pH 4.5 (mg CaCO3/L)	42.3
<1.25	Biochemical Oxygen Demand (mg/L)	<4.0
	<0.30 0.266 - <0.01 208	<0.30

Habitat Sampled

Slow/Shallow	2
Fast/Shallow]]1
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	21
EPT Taxa Richness	9
Beck's Index	19
Shannon Diversity Index	1.89
Hilsenhoff Biotic Index	5.51
Percent Sensitive Individuals	6.36
Index of Biotic Integrity	48.3

Embeddedness + Sediment Deposition	26
Condition of Banks + Vegetative Protection	31
Habitat Assessment Score (Overall)	171

Site Summary Sheet: MARSCR11

Stream Name	Marshalls Creek	Latitude	41.054246	
Date Sampled	4/8/2021	Longitude	-75.13672	
Time Sampled	11:51:00 AM	Municipality	Middle Smithfield	
Drainage Area (sq mi)	11.9	Habitat Type	Riffle/Run	
Location Description	385 meters north of intersecti	on of Marshalls Creek Rd. and Go	olfcart Rd.	

Field Measurements pH 7.43 Dissolved Oxygen (%) 103.9 Dissolved Oxygen (mg/L) 11.87 Conductivity (µS/cm) 79.0 Total Dissolved Solids (mg/L) 51.469 Temperature (°C) 9.6

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.66	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	4.49	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	22.7	pH (Lab)	7
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	6.66
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	TF
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	1.47
Total Dissolved Solids (Lab) (mg/L)	64.0	Alkalinity to pH 4.5 (mg CaCO3/L)	10.5
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	27
EPT Taxa Richness	16
Beck's Index	34
Shannon Diversity Index	2.71
Hilsenhoff Biotic Index	3.12
Percent Sensitive Individuals	56.0
Index of Biotic Integrity	83.6

Embeddedness + Sediment Deposition	35
Condition of Banks + Vegetative Protection	34
Habitat Assessment Score (Overall)	202

Site Summary Sheet: MARSCR18

Stream Name	Marshalls Creek	Latitude	40.998555	
Date Sampled	4/8/2021	Longitude	-75.139952	
Time Sampled	9:09:00 AM	Municipality	Smithfield	
Drainage Area (sq mi)	26.3	Habitat Type	Riffle/Run	
Location Description	Next to Minisink Hotel parking	lot off of Post Office Rd.		

Field Measurements		
рН	7.67	
Dissolved Oxygen (%)	101.9	
Dissolved Oxygen (mg/L)	11.54	
Conductivity (µS/cm)	190.0	
Total Dissolved Solids (mg/L)	123.441	
Temperature (°C)	9.9	

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.89	Phosphorus as P (mg/L)	0.024
Chloride (mg/L)	24.3	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	55.4	pH (Lab)	7.4
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	18.3
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	11-
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	2.38
Total Dissolved Solids (Lab) (mg/L)	154	Alkalinity to pH 4.5 (mg CaCO3/L)	35.7
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	1
Slow/Deep	1
Fast/Deep	3

Macroinvertebrate Metrics

Total Taxa Richness	25
EPT Taxa Richness	10
Beck's Index	12
Shannon Diversity Index	2.01
Hilsenhoff Biotic Index	3.30
Percent Sensitive Individuals	56.6
Index of Biotic Integrity	63.5

Embeddedness +	33
Sediment Deposition	
Condition of Banks	33
+	
Vegetative Protection	1
Habitat Assessment Score	189
(Overall)	

Site Summary Sheet: MARSCR19

Stream Name	Marshalls Creek	Latitude	41.108419	
Date Sampled	4/8/2021	Longitude	-75.155693	
Time Sampled	11:00:00 AM	Municipality	Middle Smithfield	
Drainage Area (sq mi)	3.1	Habitat Type	Riffle/Run	

Field Measurements		
рН	6.99	
Dissolved Oxygen (%)	96.9	
Dissolved Oxygen (mg/L)	11.26	
Conductivity (µS/cm)	48.0	
Total Dissolved Solids (mg/L)	30.862	
Temperature (°C)	8.8	

Lab Chemistry Results

Total Organic Carbon (mg/L)	2.23	Phosphorus as P (mg/L)	0.02
Chloride (mg/L)	4.14	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	13.9	pH (Lab)	6.9
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	1-
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	4.18
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	0.84
Total Dissolved Solids (Lab) (mg/L)	54.0	Alkalinity to pH 4.5 (mg CaCO3/L)	8.4
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	2
Fast/Shallow	1
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	13
EPT Taxa Richness	5
Beck's Index	12
Shannon Diversity Index	1.21
Hilsenhoff Biotic Index	1.99
Percent Sensitive Individuals	78.7
Index of Biotic Integrity	55.2

Embeddedness + Sediment Deposition	34
Condition of Banks + Vegetative Protection	38
Habitat Assessment Score (Overall)	206

Site Summary Sheet: MCMICR22

Stream Name	McMichael Creek	Latitude	40.930902	
Date Sampled	4/12/2021	Longitude	-75.363567	
Time Sampled	8:30:00 AM	Municipality	Chestnuthill	
Drainage Area (sq ml)	17.7	Habitat Type	Riffle/Run	
Location Description	115m south of intersection of	Mcilhaney Rd. and Kennel Rd.		

Field Measurements		
рН	7.04	
Dissolved Oxygen (%)	95.9	
Dissolved Oxygen (mg/L)	11.05	
Conductivity (µS/cm)	68.0	
Total Dissolved Solids (mg/L)	44.195	
Temperature (°C)	9.1	

Lab Chemistry Results

Total Organic Carbon (mg/L)	3.04	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	10.4	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	18.3	pH (Lab)	6.8
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	0.45	Calcium (mg/L)	4.63
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	1
Nitrite as N (mg/L)	<0.03	Magnesium (mg/L)	1.63
Total Dissolved Solids (Lab) (mg/L)	49.0	Alkalinity to pH 4.5 (mg CaCO3/L)	10.5
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	0
Fast/Deep	3

Macroinvertebrate Metrics

Total Taxa Richness	29
EPT Taxa Richness	17
Beck's Index	35
Shannon Diversity Index	2.61
Hilsenhoff Biotic Index	2.67
Percent Sensitive Individuals	68.0
Index of Biotic Integrity	88.6

Embeddedness +	26
Sediment Deposition	
Condition of Banks	37
+	
Vegetative Protection	
Habitat Assessment Score	188
(Overall)	

Site Summary Sheet: MCMICR37

Stream Name	McMichael Creek	Latitude	40.962041	
Date Sampled	4/12/2021	Longitude	-75.236508	
Time Sampled	10:08:00 AM	Municipality	Stroud	
Drainage Area (sq mi)	63.1	Habitat Type	Riffle/Run	
Location Description	Hickory Valley State Park 60n	n southeast from parking area.		

Field MeasurementspH7.50Dissolved Oxygen (%)96.4Dissolved Oxygen (mg/L)10.82Conductivity (µS/cm)150.0Total Dissolved Solids (mg/L)97.608Temperature (°C)10.2

Lab Chemistry Results

Total Organic Carbon (mg/L)	2.86	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	20.5	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	43.1	pH (Lab)	6.9
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	0.45	Calcium (mg/L)	13.5
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	1
Nitrite as N (mg/L)	<0.03	Magnesium (mg/L)	2.30
Total Dissolved Solids (Lab) (mg/L)	68.0	Alkalinity to pH 4.5 (mg CaCO3/L)	23.1
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0
	1		

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	0
Fast/Deep	3

Macroinvertebrate Metrics

Total Taxa Richness	18
EPT Taxa Richness	9
Beck's Index	14
Shannon Diversity Index	2.16
Hilsenhoff Biotic Index	3.96
Percent Sensitive Individuals	35.0
Index of Biotic Integrity	65.4

Embeddedness +	22
Sediment Deposition	
Condition of Banks	32
+ Vegetative Protection	
Habitat Assessment Score	166
(Overall)	

Site Summary Sheet: MIDDCR04

Stream Name	Middle Creek	Latitude	40.905822	
Date Sampled	4/5/2021	Longitude	-75.496614	
Time Sampled	1:31:00 AM	Municipality	Polk	
Drainage Area (sq ml)	18.1	Habitat Type	Riffle/Run	
Location Description	Downstream of observation	deck on Cliff Woodring Trail.		

Field Measurements 7.09 pН Dissolved Oxygen (%) 103.9 12.03 Dissolved Oxygen (mg/L) Conductivity (µS/cm) 74.0 Total Dissolved Solids (mg/L) 48.010 8.9 Temperature (°C)

Lab Chemistry Results

Total Organic Carbon (mg/L)	0.91	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	12.0	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	18.6	pH (Lab)	7.3
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<2.00	Calcium (mg/L)	4.29
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	1
Nitrite as N (mg/L)	<0.13	Magnesium (mg/L)	1.92
Total Dissolved Solids (Lab) (mg/L)	<10.0	Alkalinity to pH 4.5 (mg CaCO3/L)	8.4
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	2
Fast/Shallow	2
Slow/Deep	0
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	25
EPT Taxa Richness	14
Beck's Index	34
Shannon Diversity Index	2.76
Hilsenhoff Biotic Index	2.59
Percent Sensitive Individuals	60.0
Index of Biotic Integrity	83.0

Embeddedness + Sediment Deposition	27
Condition of Banks + Vegetative Protection	32
Habitat Assessment Score (Overall)	174

Site Summary Sheet: MILLCR03

Stream Name	Mill Creek	Latitude	41.163201	
Date Sampled	4/6/2021	Longitude	-75.251528	
Time Sampled	12:50:00 PM	Municipality	Barrett	
Drainage Area (sq mi)	6.8	Habitat Type	Riffle/Run	
Location Description	560m west of intersection o	f Sand Spring Rd. and Mill Creek R	d.	

Field Measurements			
рН	7.19		
Dissolved Oxygen (%)	98.6		
Dissolved Oxygen (mg/L)	11.69		
Conductivity (µS/cm)	83.0		
Total Dissolved Solids (mg/L)	53.951		
Temperature (°C)	7.9		

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.28	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	14.7	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	17.4	pH (Lab)	6.9
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	4.80
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	1.31
Total Dissolved Solids (Lab) (mg/L)	61.0	Alkalinity to pH 4.5 (mg CaCO3/L)	8.4
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	21
EPT Taxa Richness	13
Beck's Index	34
Shannon Diversity Index	1.95
Hilsenhoff Biotic Index	1.68
Percent Sensitive Individuals	77.3
Index of Biotic Integrity	80.2

Embeddedness + Sediment Deposition	36
Condition of Banks + Vegetative Protection	35
Habitat Assessment Score (Overall)	209

Site Summary Sheet: PARACR08

Stream Name	Paradise Creek	Latitude	41.066498
Date Sampled	4/6/2021	Longitude	-75.221395
Time Sampled	9:51:00 AM	Municipality	Stroud
Drainage Area (sq ml)	43.5	Habitat Type	Riffle/Run
Location Description	Sugar Cane Ln. access off of	Rt. 191 Bridge. 150m west from \$	Sugar Cane Rd, walk across Brodhead to site

Field Measurements			
рН	7.55		
Dissolved Oxygen (%)	103.6		
Dissolved Oxygen (mg/L)	12.74		
Conductivity (µS/cm)	194.0		
Total Dissolved Solids (mg/L)	125.971		
Temperature (°C)	6.5		

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.50	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	40.9	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	31.2	pH (Lab)	7.1
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	8.72
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	2.28
Total Dissolved Solids (Lab) (mg/L)	120	Alkalinity to pH 4.5 (mg CaCO3/L)	16.8
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

H	la	bil	tat	Sa	m	ple	ed	

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	2
Fast/Deep	1

Macroinvertebrate Metrics

Total Taxa Richness	21
EPT Taxa Richness	12
Beck's Index	21
Shannon Diversity Index	2.20
Hilsenhoff Biotic Index	3.28
Percent Sensitive Individuals	59.9
Index of Biotic Integrity	83.6

Embeddedness + Sediment Deposition	31
Condition of Banks + Vegetative Protection	15
Habitat Assessment Score (Overall)	181

Site Summary Sheet: POCOCR09

Stream Name	Pocono Creek	Latitude	41.039252	
Date Sampled	4/7/2021	Longitude	-75.309729	
Time Sampled	12:20:00 PM	Municipality	Pocono	
Drainage Area (sq mi)	18.6	Habitat Type	Riffle/Run	
Location Description	65m north of Old Mill Rd. bri	dge.		

Field Measurements pH 7.37 Dissolved Oxygen (%) 101.4 Dissolved Oxygen (mg/L) 11.74 Conductivity (µS/cm) 202.0 Total Dissolved Solids (mg/L) 131.224 Temperature (°C) 8.9

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.52	Phosphorus as P (mg/L)	0.027
Chloride (mg/L)	46.3	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	35.4	pH (Lab)	7
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	10.1
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	1
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	2.48
Total Dissolved Solids (Lab) (mg/L)	110	Alkalinity to pH 4.5 (mg CaCO3/L)	10.5
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	16
EPT Taxa Richness	7.00
Beck's Index	15
Shannon Diversity Index	1.72
Hilsenhoff Biotic Index	4.72
Percent Sensitive Individuals	25.5
Index of Biotic Integrity	46.7

Embeddedness +	33
Sediment Deposition	
Condition of Banks	31
+	
Vegetative Protection	
Habitat Assessment Score	189
(Overall)	

Site Summary Sheet: POCOCR14

Stream Name	Pocono Creek	Latitude	40.981165	
Date Sampled	4/7/2021	Longitude	-75.197009	
Time Sampled	1:17:00 PM	Municipality	Stroudsburg	
Drainage Area (sq mi)	49.4	Habitat Type	Riffle/Run	
Location Description	70m south from S. 10th St a	nd Ann St.		

Field Measurements pH 8.10 Dissolved Oxygen (%) 112.3 Dissolved Oxygen (mg/L) 12.51 Conductivity (µS/cm) 246.0 Total Dissolved Solids (mg/L) 160.101 Temperature (°C) 10.5

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.83	Phosphorus as P (mg/L)	0.251
Chloride (mg/L)	52.9	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	47_7	pH (Lab)	7.3
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<0.40	Calcium (mg/L)	14.3
Nitrate-Nitrite as N (mg/L)	1-	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.03	Magnesium (mg/L)	2.93
Total Dissolved Solids (Lab) (mg/L)	115	Alkalinity to pH 4.5 (mg CaCO3/L)	21.0
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

1
2
1
2

Macroinvertebrate Metrics

Total Taxa Richness	18
EPT Taxa Richness	12
Beck's Index	21
Shannon Diversity Index	1.38
Hilsenhoff Biotic Index	4.70
Percent Sensitive Individuals	25.0
Index of Biotic Integrity	65.1

Embeddedness + Sediment Deposition	31
Condition of Banks + Vegetative Protection	32
Habitat Assessment Score (Overall)	182

Site Summary Sheet: POCOCR01

Stream Name	Pocono Creek	Latitude	41.058983	
Date Sampled	4/7/2021	Longitude	-75.34886	
Time Sampled	10:05:00 AM	Municipality	Pocono	
Drainage Area (sq mi)	8.8	Habitat Type	Riffle/Run	
Location Description	300m south on Camelback F	Rd from intersection of Camelback	Rd. and Wilke Rd.	

Field Measurements pH 7.16 Dissolved Oxygen (%) 99.0 Dissolved Oxygen (mg/L) 11.88 Conductivity (µS/cm) 111.0 Total Dissolved Solids (mg/L) 72.216 Temperature (°C) 7.5

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.54	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	24.5	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	16.7	pH (Lab)	6.6
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	4.71
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	1,20
Total Dissolved Solids (Lab) (mg/L)	93.0	Alkalinity to pH 4.5 (mg CaCO3/L)	8.4
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	23
EPT Taxa Richness	15
Beck's Index	34
Shannon Diversity Index	2.25
Hilsenhoff Biotic Index	2.56
Percent Sensitive Individuals	64.0
Index of Biotic Integrity	80.7

Embeddedness + Sediment Deposition	32
Condition of Banks + Vegetative Protection	30
Habitat Assessment Score (Overall)	193

Site Summary Sheet: POHOCR01

Stream Name	Pohopoco Creek	Latitude	40.961684	
Date Sampled	4/5/2021	Longitude	-75.465	
Time Sampled	12:00:00 PM	Municipality	Chestnuthill	
Drainage Area (sq mi)	5.9	Habitat Type	Riffle/Run	
Location Description	330m southeast from intersec	tion of Merwinsburg Rd. and Burg	ger Hollow Rd.	

Field Measurements		
рН	6.91	
Dissolved Oxygen (%)	100.9	
Dissolved Oxygen (mg/L)	11.91	
Conductivity (µS/cm)	127.0	
Total Dissolved Solids (mg/L)	82.375	
Temperature (°C)	8.1	

Lab Chemistry Results

Total Organic Carbon (mg/L)	0.76	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	27.1	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	24.4	pH (Lab)	6.8
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<2.00	Calcium (mg/L)	5.57
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.13	Magnesium (mg/L)	2.54
Total Dissolved Solids (Lab) (mg/L)	93.0	Alkalinity to pH 4.5 (mg CaCO3/L)	8.4
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	24
EPT Taxa Richness	12
Beck's Index	26
Shannon Diversity Index	2.53
Hilsenhoff Biotic Index	2.64
Percent Sensitive Individuals	71.0
Index of Biotic Integrity	77.8

Embeddedness +	29
Sediment Deposition	
Condition of Banks	33
Vegetative Protection	
Habitat Assessment Score	198
(Overall)	

Site Summary Sheet: POHOCR29

Stream Name	Pohopoco Creek	Latitude	40.89951	
Date Sampled	4/5/2021	Longitude	-75.506215	
Time Sampled	10:15:00 AM	Municipality	Polk	
Drainage Area (sq mi)	50	Habitat Type	Riffle/Run	
Location Description	700 meters west on Whitey B	Ln. from intersection of Whitey B	Ln. and Rt. 209.	

Field Measurements		
рН	6.92	
Dissolved Oxygen (%)	101.7	
Dissolved Oxygen (mg/L)	12.23	
Conductivity (µS/cm)	111.0	
Total Dissolved Solids (mg/L)	71.882	
Temperature (°C)	7.4	

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.14	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	19.4	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	28.1	pH (Lab)	6.7
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<2.00	Calcium (mg/L)	6.80
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	1
Nitrite as N (mg/L)	<0.13	Magnesium (mg/L)	2.70
Total Dissolved Solids (Lab) (mg/L)	84.0	Alkalinity to pH 4.5 (mg CaCO3/L)	10.5
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	26
EPT Taxa Richness	12
Beck's Index	22
Shannon Diversity Index	2.45
Hilsenhoff Biotic Index	3.41
Percent Sensitive Individuals	49.0
Index of Biotic Integrity	85.4

Embeddedness + Sediment Deposition	32
Condition of Banks + Vegetative Protection	36
Habitat Assessment Score (Overall)	205

Site Summary Sheet: SAMBCR02

Stream Name	Sambo Creek	Latitude	41.009419	
Date Sampled	4/14/2021	Longitude	-75.190549	
Time Sampled	12:10:00 PM	Municipality	East Stroudsburg	
Drainage Area (sq mi)	10	Habitat Type	Riffle/Run	
Location Description	45m east of Levee Loop Tra	il, north of John Konawalick Field		

Field Measurements pH 8.50 Dissolved Oxygen (%) 125.4 Dissolved Oxygen (mg/L) 13.57 Conductivity (µS/cm) 214.0 Total Dissolved Solids (mg/L) 139.270 Temperature (°C) 11.8

Lab Chemistry Results

Total Organic Carbon (mg/L)	2.68	Phosphorus as P (mg/L)	0.254
Chloride (mg/L)	32.7	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	57.0	pH (Lab)	8.1
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	1-
Nitrate as N (mg/L)	0.357	Calcium (mg/L)	19.0
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	11-
Nitrite as N (mg/L)	<0.01	Magnesium (mg/L)	2.31
Total Dissolved Solids (Lab) (mg/L)	184	Alkalinity to pH 4.5 (mg CaCO3/L)	33.8
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	2
Fast/Deep	1

Macroinvertebrate Metrics

Total Taxa Richness	22
EPT Taxa Richness	10
Beck's Index	13
Shannon Diversity Index	2.06
Hilsenhoff Biotic Index	5.12
Percent Sensitive Individuals	19.3
Index of Biotic Integrity	51.4

Embeddedness +	27
Sediment Deposition	
Condition of Banks	31
+	
Vegetative Protection	
Habitat Assessment Score	171
(Overall)	

Site Summary Sheet: SASPRN01

Stream Name	Sand Spring	Latitude	41.061595	
Date Sampled	4/7/2021	Longitude	-75.37459	
Time Sampled	10:50:00 AM	Municipality	Jackson	
Drainage Area (sq mi)	1.2	Habitat Type	Riffle/Run	
Location Description	600m west of Wilke Rd. dea	ad end		

Field Measurements pH 6.77 Dissolved Oxygen (%) 97.6 Dissolved Oxygen (mg/L) 11.16 Conductivity (µS/cm) 59.0 Total Dissolved Solids (mg/L) 38.221 Temperature (°C) 9.4

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.76	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	13.2	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	6.36	pH (Lab)	6
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	1.75
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	0.48
Total Dissolved Solids (Lab) (mg/L)	103	Alkalinity to pH 4.5 (mg CaCO3/L)	6.3
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	9
EPT Taxa Richness	2.00
Beck's Index	4
Shannon Diversity Index	1.05
Hilsenhoff Biotic Index	2.87
Percent Sensitive Individuals	73.3
Index of Biotic Integrity	43.3

Embeddedness + Sediment Deposition	31
Condition of Banks + Vegetative Protection	18
labitat Assessment Score (Overall)	183

Site Summary Sheet: SASPRN02

Stream Name	Sand Spring	Latitude	41.061234	
Date Sampled	4/7/2021	Longitude	-75.375798	
Time Sampled	11:26:00 AM	Municipality	Jackson	
Drainage Area (sq mi)	1.2	Habitat Type	Riffle/Run	
Location Description	700m west of Wilke Rd. dea	ad end.		

Field Measurements		
рН	6.65	
Dissolved Oxygen (%)	97.3	
Dissolved Oxygen (mg/L)	11.05	
Conductivity (µS/cm)	28.0	
Total Dissolved Solids (mg/L)	18.006	
Temperature (°C)	9.8	

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.57	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	4.32	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	5.02	pH (Lab)	6.2
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	1.26
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	0.46
Total Dissolved Solids (Lab) (mg/L)	22.0	Alkalinity to pH 4.5 (mg CaCO3/L)	6.3
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	3
Slow/Deep	0
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	9
EPT Taxa Richness	3.00
Beck's Index	6
Shannon Diversity Index	1.27
Hilsenhoff Biotic Index	3.54
Percent Sensitive Individuals	56.9
Index of Biotic Integrity	41.7

28
19
176

Site Summary Sheet: SWIFCR10

Stream Name	Swiftwater Creek	Latitude	41.100894	
Date Sampled	4/7/2021	Longitude	-75.346355	
Time Sampled	9:07:00 AM	Municipality	Pocono	
Drainage Area (sq mi)	3.4	Habitat Type	Riffle/Run	
Location Description	Immediately Downstream of F	Route 314 Bridge (above confluen	ce of Indian Run)	

Field Measurements pH 7.13 Dissolved Oxygen (%) 98.2 Dissolved Oxygen (mg/L) 11.98 Conductivity (µS/cm) 153.0 Total Dissolved Solids (mg/L) 99.494 Temperature (°C) 6.8

Lab Chemistry Results

Total Organic Carbon (mg/L)	0.77	Phosphorus as P (mg/L)	0.021
Chloride (mg/L)	36.0	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	25.1	pH (Lab)	6.5
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	1-
Nitrate as N (mg/L)	<0.80	Calcium (mg/L)	6.83
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	11-
Nitrite as N (mg/L)	<0.05	Magnesium (mg/L)	1.94
Total Dissolved Solids (Lab) (mg/L)	78.0	Alkalinity to pH 4.5 (mg CaCO3/L)	8.4
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	25
EPT Taxa Richness	15
Beck's Index	36
Shannon Diversity Index	2.31
Hilsenhoff Biotic Index	3.25
Percent Sensitive Individuals	3.25
Index of Biotic Integrity	78.5

Embeddedness + Sediment Deposition	33
Condition of Banks + Vegetative Protection	35
Habitat Assessment Score (Overall)	194

Site Summary Sheet: TOBYCR01

Stream Name	Tobyhanna Creek	Latitude	41.160987	
Date Sampled	4/13/2021	Longitude	-75.45212	
Time Sampled	9:00:00 AM	Municipality	Coolbaugh	
Drainage Area (sq mi)	21.9	Habitat Type	Riffle/Run	
Location Description	Upstream of Route 423 bridge	in SGL 127		

Field Measurements pH 7.08 Dissolved Oxygen (%) 93.6 Dissolved Oxygen (mg/L) 10.94 Conductivity (µS/cm) 151.0 Total Dissolved Solids (mg/L) 98.115 Temperature (°C) 8.5

Lab Chemistry Results

Total Organic Carbon (mg/L)	5.79	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	33.5	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	22.4	pH (Lab)	6.6
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<2.00	Calcium (mg/L)	6.67
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.13	Magnesium (mg/L)	1,40
Total Dissolved Solids (Lab) (mg/L)	125	Alkalinity to pH 4.5 (mg CaCO3/L)	8.5
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	23
EPT Taxa Richness	12.00
Beck's Index	23
Shannon Diversity Index	2.34
Hilsenhoff Biotic Index	4.13
Percent Sensitive Individuals	42.78
Index of Biotic Integrity	66.4

Embeddedness +	36
Sediment Deposition Condition of Banks + Vegetative Protection	36
Habitat Assessment Score (Overall)	216

Site Summary Sheet: TOBYCR14

Stream Name	Tobyhanna Creek	Latitude	41.082791	
Date Sampled	4/13/2021	Longitude	-75.583083	
Time Sampled	1:55:00 PM	Municipality	Tobyhanna	
Drainage Area (sq mi)	82,6	Habitat Type	Riffle/Run	
Location Description	50m east of Rt. 115 bridge ne	ar Austin T. Blakeslee Natural An	Ba.	

Field Measurements		
рН	6.93	
Dissolved Oxygen (%)	99.2	
Dissolved Oxygen (mg/L)	10.53	
Conductivity (µS/cm)	123.0	
Total Dissolved Solids (mg/L)	79.684	
Temperature (°C)	12.7	

Lab Chemistry Results

Total Organic Carbon (mg/L)	4.79	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	29.0	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	17.9	pH (Lab)	6.4
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<2.00	Calcium (mg/L)	5.30
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.13	Magnesium (mg/L)	1.13
Total Dissolved Solids (Lab) (mg/L)	122	Alkalinity to pH 4.5 (mg CaCO3/L)	6.4
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

٦

Habitat Sampled

Slow/Shallow	0
Fast/Shallow	1
Slow/Deep	2
Fast/Deep	3

Macroinvertebrate Metrics

Total Taxa Richness	26
EPT Taxa Richness	12.00
Beck's Index	17
Shannon Diversity Index	2.66
Hilsenhoff Biotic Index	3.89
Percent Sensitive Individuals	51.9
Index of Biotic Integrity	86.2

Embeddedness + Sediment Deposition	27
Condition of Banks + Vegetative Protection	33
Habitat Assessment Score (Overall)	185

Site Summary Sheet: TUNKCR03

Stream Name	Tunkhannock Creek	Latitude	41.059541	
Date Sampled	4/13/2021	Longitude	-75.552735	
Time Sampled	1:30:00 PM	Municipality	Tunkhannock	
Drainage Area (sq mi)	21.7	Habitat Type	Riffle/Run	
Location Description	160m north of Tunkhannock Fis	shing Association Parking area.		

Field Measurements		
рН	5.47	
Dissolved Oxygen (%)	94.9	
Dissolved Oxygen (mg/L)	10.67	
Conductivity (µS/cm)	50.0	
Total Dissolved Solids (mg/L)	32.727	
Temperature (°C)	10.2	

Lab Chemistry Results

Total Organic Carbon (mg/L)	12.0	Phosphorus as P (mg/L)	0.02
Chloride (mg/L)	11.0	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	7.45	pH (Lab)	5.1
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<2.00	Calcium (mg/L)	1.88
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.13	Magnesium (mg/L)	0.67
Total Dissolved Solids (Lab) (mg/L)	177	Alkalinity to pH 4.5 (mg CaCO3/L)	<6.0
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	0
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	3

Macroinvertebrate Metrics

Total Taxa Richness	24
EPT Taxa Richness	8.00
Beck's Index	14
Shannon Diversity Index	2.68
Hilsenhoff Biotic Index	3.51
Percent Sensitive Individuals	54.4
Index of Biotic Integrity	65.0

Embeddedness + Sediment Deposition	31
Condition of Banks + Vegetative Protection	36
Habitat Assessment Score (Overall)	191

Site Summary Sheet: TUNKCR04

Stream Name	Tunkhannock Creek	Latitude	41.029676	
Date Sampled	4/13/2021	Longitude	-75.453822	
Time Sampled	12:25:00 PM	Municipality	Tunkhannock	
Drainage Area (sq mi)	8.8	Habitat Type	Low Gradient	
Location Description	Off Fire Ln. Near Bethlehem W	ater Authroity dam		

Field Measurements pH 5.44 Dissolved Oxygen (%) 84.1 Dissolved Oxygen (mg/L) 9.69 Conductivity (µS/cm) 53.0 Total Dissolved Solids (mg/L) 34.255 Temperature (°C) 9.1

Lab Chemistry Results

Total Organic Carbon (mg/L)	12.5	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	12.9	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	6.85	pH (Lab)	5
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<2.00	Calcium (mg/L)	1.79
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	1-
Nitrite as N (mg/L)	<0.13	Magnesium (mg/L)	0.58
Total Dissolved Solids (Lab) (mg/L)	110	Alkalinity to pH 4.5 (mg CaCO3/L)	<6.0
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

1
3
2
3
1

Macroinvertebrate Metrics

Total Taxa Richness	14
EPT Taxa Richness	6
Beck4	11
Shannon Diversity Index	1.57
# of Caddisfly Taxa	4
# of Mayfly Taxa	4
Index of Biotic Integrity	49.7

Pool Substrate Characterization + Sediment Deposition	30
Bank Vegetative Protection + Bank Stability	38
Habitat Assessment Score (Overall)	157

Site Summary Sheet: UPTNCR01

Stream Name	Upper Tunkhannock Creek	Latitude	41.116651	
Date Sampled	4/13/2021	Longitude	-75.434099	
Time Sampled	10:05:00 AM	Municipality	Tobyhanna	
Drainage Area (sq mi)	13.6	Habitat Type	Riffle/Run	

Field Measureme	nts
рН	7.04
Dissolved Oxygen (%)	94.3
Dissolved Oxygen (mg/L)	10.47
Conductivity (µS/cm)	221.0
Total Dissolved Solids (mg/L)	143.529
Temperature (°C)	10.7

Lab Chemistry Results

Total Organic Carbon (mg/L)	3.56	Phosphorus as P (mg/L)	0.024
Chloride (mg/L)	54.2	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	26.8	pH (Lab)	6.5
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<2.00	Calcium (mg/L)	7.86
Nitrate-Nitrite as N (mg/L)	-	Iron (mg/L)	1
Nitrite as N (mg/L)	<0.13	Magnesium (mg/L)	1.75
Total Dissolved Solids (Lab) (mg/L)	138	Alkalinity to pH 4.5 (mg CaCO3/L)	8.5
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sa	ampled
Slow/Shallow	
Fast/Shallow	
Slow/Deep	
Fast/Deep	

Macroinvertebrate Metrics

Total Taxa Richness	12
EPT Taxa Richness	2.00
Beck's Index	3
Shannon Diversity Index	1.87
Hilsenhoff Biotic Index	5.28
Percent Sensitive Individuals	5.3
Index of Biotic Integrity	30.8

Embeddedness + Sediment Deposition	34
Condition of Banks + Vegetative Protection	33
Habitat Assessment Score (Overall)	197

Site Summary Sheet: UPTNCR02

Stream Name	Upper Tunkhannock Creek	Latitude	41.10608	
Date Sampled	4/13/2021	Longitude	-75.485932	
Time Sampled	11:05:00 AM	Municipality	Tobyhanna	
Drainage Area (sq mi)	19.8	Habitat Type	Riffle/Run	
Location Description	Downstream of Lake Naomi off Ok	1940		

Field Measureme	nts
рН	6.94
Dissolved Oxygen (%)	96.9
Dissolved Oxygen (mg/L)	10.70
Conductivity (µS/cm)	181.0
Total Dissolved Solids (mg/L)	117.573
Temperature (°C)	10.9

Lab Chemistry Results

Total Organic Carbon (mg/L)	4.43	Phosphorus as P (mg/L)	<0.020
Chloride (mg/L)	46.6	Temperature (Lab) (°C)	-
Hardness (mg CaCO3/L)	22.4	pH (Lab)	6.4
Ammonia as N (mg/L)	<0.30	Aluminum (mg/L)	-
Nitrate as N (mg/L)	<2.00	Calcium (mg/L)	6.67
Nitrate-Nitrite as N (mg/L)	F	Iron (mg/L)	1
Nitrite as N (mg/L)	<0.13	Magnesium (mg/L)	1.39
Total Dissolved Solids (Lab) (mg/L)	83.0	Alkalinity to pH 4.5 (mg CaCO3/L)	8.5
Total Kjeldahl Nitrogen (mg/L)	<1.25	Biochemical Oxygen Demand (mg/L)	<4.0

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Macroinvertebrate Metrics

Total Taxa Richness	14
EPT Taxa Richness	4.00
Beck's Index	8
Shannon Diversity Index	2.31
Hilsenhoff Biotic Index	5.08
Percent Sensitive Individuals	28.6
Index of Biotic Integrity	43.3

Embeddedness + Sediment Deposition	33
Condition of Banks + Vegetative Protection	33
Habitat Assessment Score (Overall)	202

Section VI. Discussion & Conclusion

Detailed results for each site (USGS discharge data, field data sheets, habitat assessment sheets, lab analysis results and macroinvertebrate scoring sheets) can be found in the Technical Appendix. Sites with IBI scores below the Aquatic Life Use attainment thresholds are discussed below.

(APPECR02) Appenzell Creek 02: 62.0 (MARSCR19) Marshall's Creek 19: 55.2 (LISACR21) Little Sambo Creek 21: 48.3 (POCOCR09) Pocono Creek 09: 46.7 (SASPRN01) Sand Spring Run 01: 43.3 (SASPRN02) Sand Spring Run 02: 41.7 (TUNKCR04) Tunkhannock Creek 04: 49.7 (UPTNCR01) Upper Tunkhannock 01: 30.8 (UPTNCR02) Upper Tunkhannock 02: 43.3 (KEIPRN02) Keiper Run 02: 34.5

Appenzell Creek 02 (HQ-CWF)

This is the second year in a row that APPECR02 has scored slightly below the HQ Aquatic Life Use attainment threshold. Of the 6 metrics used in the IBI analysis, 5/6 scored near (± 2%) or above the ALU threshold. APPECR02 had a value of 49.7% for the Percent Sensitive Individuals metric due to a large number of *Chironomidae* sp. in the sample. This brought the average of the six metrics below the ALU threshold. Continued monitoring is necessary to determine if this is a result of site conditions at the time of sampling or if there has been a decline in the health of the aquatic community.

Marshall's Creek 19 (HQ-CWF)

The results for this reach came back with 141/207 individuals being of the *Ephemerella* genus. This resulted in a high value for Percent Sensitive Individuals, 93.7%, but the lack of diversity within the sample resulted in low values for the other 5 metrics. Habitat within this reach was limited to mostly large boulders and aquatic vegetation. The lack of diversity in habitat may have contributed to the lack of diversity in the macroinvertebrate community. The high percentage of pollution sensitive individuals indicates that overall water quality was not the reason for the low IBI value.

Little Sambo Creek 21 (CWF)

This reach scored low by all six metrics. There was minimal diversity in the sample, with approximately 64% of the 236 individuals being *Simulium sp.* (54 individuals) or *Chironomidae sp.* (97 individuals). Both of the dominant species have pollution tolerance scores of six, contributing to the Percent Sensitive Individuals score of 7.5%. Siltation was noted as an issue in this reach, with both Embeddedness and Sediment Deposition being scored as sub-optimal on the habitat assessment sheets. There was also a heavy presence of filamentous algae throughout this reach. These factors may have contributed to the low IBI score for this stream.

Pocono Creek 09 (HQ-CWF)

Similar to Little Sambo Creek, this reach scored low by all six metrics due to lack of species diversity and the presence of large quantities of pollution tolerant individuals. *Baetis sp.*, a genus of pollution tolerant mayflies, made up 39.1% of the sample. Due to historic channelization of the Pocono Creek between Rt. 80 and 611, this site has little connection to its floodplain. This results in a lack of diversity in flow regimes, with most of the habitat consisting of riffles with very few pools and runs. The lack of habitat diversity, entrenchment of the stream and other upstream factors may have contributed to the low IBI score of this reach.

Sand Spring Run 01 & Sand Spring Run 02 (HQ-CWF, Existing Use EV)

We began sampling these reaches in 2019 in order to evaluate the long-term efficacy of a restoration project occurring upstream. Construction has not yet begun, but is scoped to begin in January of 2022. The IBI scores for both sites have continued to score below the EV Aquatic Life Use attainment threshold, indicating potential impairment. These reaches have headwaters in largely undeveloped areas, limiting the number of potential sources for impairment. These two sites will continue to be monitored to determine if the upstream habitat restoration improves the health of the aquatic community.

Tunkhannock Creek 04 (HQ-CWF, Existing Use EV)

This reach is surrounded by a large tract undeveloped forest and wetlands, which may have actually contributed to the low IBI score in this reach. The biota of the forest and wetlands have created a high concentration of tannic acid in Tunkhannock Creek, leading to the "tea stained" water and low pH observed on site. The high concentration of tannic acid and subsequent low pH create a habitat that's inhospitable for many macroinvertebrates. Another influence may have been that our sample period coincided with a hatch of *Simulium* sp., which comprised 60.6% of our sampled individuals. The large number of *Simulium* sp. lowered the scores of the diversity metrics used in the analysis.

*The IBI score for this site was analyzed as riffle/run habitat by our consultant. A table with the low gradient scores used in this report can be found in the technical appendix.

Upper Tunkhannock 01 & 02 (HQ-CWF)

Both of these sites are located within narrow reaches between two large lake systems. The short distance between these lake systems may not have allowed enough time for the natural development of a stream channel & community. Only 76 individuals were found in the entire sample for UPTNCR01 and 49 in UPTNCR02. A minimum of 160 individuals are required to generate an accurate assessment. The metrics were still calculated, the results are considered unreliable. No determination can be made based on the data collected at these sites.

Keiper Run 02 (HQ-CWF)

The low score seen at this reach is due to a lack of diversity in the macroinvertebrate community combined with a heavy presence of both *Simulium sp.* (84/188 individuals) and *Chironomidae sp.* (57/188 individuals). This may be caused by the lack of diverse habitat within the reach. The reach is comprised almost entirely of riffles with few runs and almost no pools. The stream bed substrate was also classified as suboptimal for the amount of embeddedness and sediment deposition observed. Those two factors can impact colonization of the substrate due to the lack of interstitial space.

Highlights for 2021

The macroinvertebrate populations sampled at the following five sites were some of the most diverse and pollution sensitive communities found in the county. The scores came in well above the Aquatic Life Use attainment threshold.

(AQUACR19) Aquashicola Creek 19: 97.7 (BRODCR22) Brodhead Creek 22: 96.5 (BRODCR30) Brodhead Creek 30: 91.6 (BUSHCR07) Bushkill Creek 07: 95.6 (CHERCR06) Cherry Creek 06: 90.1

Recommendations

After reviewing the data from the 2021 Water Quality Study, the lead agencies recommend the following:

- Further analysis of the low-scoring sites listed above in our conclusions. If these sites continue to trend below the ALU attainment threshold, contact PA DEP's Water Quality Division.
- Addition of discharge measurements to compare year-to-year flow conditions during sampling.
- Continue to collect data at existing sites to further develop long-term trends of Monroe County's water quality. As part of this ongoing effort, results for the past six years of sampling at these sites can be found in Table 6 on the following page.

Table 6: IBI trends 2015 to 2021.

Site ID	IBI 2015	IBI 2016	IBI 2017	IBI 2018	IBI 2019	IBI 2020	IBI 2021
AQUACR19					74.2	78.3	97.6
BUCKCR01			73.5	62.5	76.1	81.9	65.2
POHOCR01			88.5	86.2	93.8	88.9	77.8
POHOCR29			83.8	74.0	75.9	92.8	85.4
MIDDCR04				72.4	86.6	93.8	83.0
JONACR01			81.6	77.6	89.5	79.6	86.6
APPECR02					92.6	62.0	62.0
MCMICR22			81.9	95.7	85.6	92.8	88.6
MCMICR37	93.6	76.2	78.6	52.1	78.5	78.6	65.4
CHERCR01				61.1	66.6	72.0	76.9
CHERCR06*	80.8	56.5	64.4	-	73.2	73.0	90.1
CHERCR06R*	67.2	73.6	68.7	-	72.0	67.6	85.7
BRODCR27			93.0	99.0	59.3	97.2	81.9
BRODCR27R						97.4	79.5
MILLCR03		83.2	97.0	80.4	89.5	90.0	80.2
BUHICR07	89.2	91.3	86.1	82.5	78.2	93.3	75.8
BRODCR22		74.1	87.1	84.6	87.5	95.0	96.5
PARACR08		85.2	82.5	86.5	85.9	95.4	83.6
BRODCR30						87.4	91.6
BRODCR31						70.4	70.3
BUTZRN01			76.0	70.9	82.8	75.7	84.4
BUSHCR07	86.7	95.3	88.6	91.0	89.8	81.4	95.6
MARSCR11	95.7	89.1	80.5	80.5	79.7	74.1	83.6
MARSCR18			76.0	70.9	80.8	92.9	63.5
MARSCR19					66.3	66.6	55.2
LISACR21							48.3
SAMBCR02						47.1	51.4
POCOCR09			80.2	72.4	55.7	90.4	46.7
POCOCR14	62.3	72.5	82.1	73.1	74.5	78.5	65.1
POCOCR01			75.9	80.7	78.2	76.4	80.7
SWIFCR10	75.8	83.2	90.6	48.2	77.5	90.3	78.5
INDIRN03				85.6	69.1	78.1	56.0
SASPRN01		50.8	-	-	56.8	48.8	43.3
SASPRN02					58.0	47.7	41.7
TOBYCR01	85.6	-	68.2	66.2	-	-	66.4
TOBYCR14	76.0	64.8	88.0	74.6	83.9	86.4	86.2
TUNKCR03	81.5	-	67.8	73.0	78.2	62.6	65.0
TUNKCR04							49.7
UPTNCR01							30.8
UPTNCR02							43.3
KEIPRN02						33.5	34.5

* IBI Scores from 2015 through 2017 assessed as Riffle Run, not as Low Gradient

Section VII. References

25 Pa. Code § 93.7. Specific water quality criteria.

- Chalfant, B. (2012). A benthic index of biotic integrity for wadeable freestone streams in Pennsylvania.
 Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania. Retrieved on October 21, 2020 from http://files.dep.state.pa.us/Water/Drinking%20Water%20and%
 20Facility%20Regulation/WaterQualityPortalFiles/Technical%20Documentation /freestonelBImarch 2012.pdf
- Lenntech B.V. (2020). Calcium and water: reaction mechanisms, environmental impacts and health effects. Retrieved October 19, 2020, from https://www.lenntech.com/periodic/water /calcium/calcium-and-water.htm#:~:text=Rivers%20generally%20contain%201%2D2, 1500%20ppm%20(dry%20mass)
- Ohrel, R. L., Register, K. M. (2006, March). *Volunteer Estuary Monitoring; A Methods Manual Second Edition*. Retrieved October 20, 2020, from https://www.epa.gov/sites/production/files/2015-09/documents/2007_04_09_estuaries_monitoruments_manual.pdf
- PADEP. (2018). Integrated Water Quality Report 2018. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania. Retrieved on October 24, 2020 from https://www.dep.pa. gov/Business/Water/CleanWater/WaterQuality/IntegratedWatersReport/Pages/2018-Integrated-Water-Quality-Report.aspx
- PADEP. (2020, September 22). *Existing Use Classification*. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania. Retrieved on October 10, 2020 from http://files.dep.state.pa.us/Water/Drinking%20Water%20and%20Facility%20Regulation /WaterQualityPortalFiles/Existing%20Use/EU%20table%20list.pdf
- Pennsylvania State Extension. (2020). *Marvelous Macroinvertebrates*. Retrieved on October 21, 2020 from https://extension.psu.edu/marvelous-macroinvertebrates
- Shull, D. R., and M. J. Lookenbill (editors). 2020. Water Quality Monitoring Protocols for Streams and Rivers. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania. Retrieved on October 15, 2020 from http://files.dep.state.pa.us/Water/Drinking%20Water% 20and%20Facility%20Regulation/WaterQualityPortalFiles/Technical%20Documentation/MONITORING_B OOK.pdf
- Shull, D. R., and M. Pulket (editors). (2020). Assessment Methodology for Rivers and Streams. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania. Retrieved on October 15, 2020 from http://files.dep.state.pa.us/Water/Drinking%20Water%20and% 20Facility%20Regulation/WaterQualityPortalFiles/Methodology/2015%20Methodology /Assessment_Book.pdf
- Stroud Water Research Center. (2020). *What Are Benthic Macroinvertebrates*. Retrieved on October 21, 2020 from https://stroudcenter.org/macros/
- USEPA. (1976, July). *Quality Criteria for Water*. EPA 440-9-76-023. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 20, 2020, from https://www.epa.gov /sites/production/files/2018-10/documents/quality-criteria-water-1976.pdf

- USEPA. (1993, August). *Method 351.2, Revision 2.0: Determination of Total Kjeldahl Nitrogen by Semi-Automated Colorimetry*. Pennsylvania Department of Environmental Protection, Environmental Monitoring Systems Laboratory. Retrieved October 19, 2020, from https://www.epa.gov/sites/production/files/2015-08/documents/method_351-2_1993.pdf
- USEPA. (2012, March 6). Water: Monitoring and Assessment 4.3 Intensive Stream Biosurvey. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 19, 2020, from https://archive.epa.gov/water/archive/web/html/vms43.html
- USEPA. (2012, March 6). *Water: Monitoring and Assessment, 5.9 Conductivity*. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 19, 2020, from https://archive.epa.gov/water/archive/web/html/vms59.html
- USEPA. (2016). A Practitioner's Guide to the Biological Condition Gradient: A Framework to Describe Incremental Change in Aquatic Ecosystems. EPA-842-R-16-001. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 26, 2020 from https://www.epa.gov/sites/production/files/2016-02/documents/bcg-practioners-guide-report.pdf
- USEPA. (2016, August 16). National Aquatic Resource Surveys; Indicators: Conductivity. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 19, 2020, from https://www.epa.gov/national-aquatic-resource-surveys/indicators-conductivity
- USEPA. (2018, December 3). Causal Analysis/Diagnosis Decision Information System (CADDIS) Vol 2 Sources, Stressors, and Responses. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 19, 2020, from https://www.epa.gov/caddis-vol2
- USEPA, Office of Water. (1986, May 1). *Quality Criteria for Water*. EPA 440/5-86-001. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 20, 2020, from https://www.epa.gov/sites/production/files/2018-10/documents/quality-criteria-water-1986.pdf
- USEPA, Office of Water. (1988, February). *Ambient Water Quality Criteria For Chloride-1988*. EPA 440/5-88-001. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 20, 2020, from https://www.epa.gov/sites/production/files/2018-08/documents/chlorideaquatic-life-criteria-1988.pdf
- USEPA. Office of Water. (2018, December). *Final Aquatic Life Ambient Water Quality Criteria for Aluminum 2018*. EPA-822-R-18-001. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 20, 2020, from https://www.epa.gov/ sites/production/files/2018-12/documents/aluminum-final-national-recommended-awqc.pdf
- USGS, Kramer, Deborah A. (2001). *Magnesium, its Alloys and Compounds*. U.S. Geological Survey Open-File Report 01-341. U.S. Department of Interior, Washington, DC. Retrieved October 20, 2020, from https://pubs.usgs.gov/of/2001/of01-341/of01-341.pdf
- USGS. (2020, October 24). National Water Information Systems. U.S. Department of Interior, Washington, DC. Retrieved on October 24, 2020 from https://waterdata.usgs.gov/nwis

USGS Water Science School. (n.d.). *Hardness of Water*. U.S. Department of Interior, Washington, DC. Retrieved October 20, 2020, from https://www.usgs.gov/special-topic/water-scienceschool/science/hardness-water?qt-science_center_objects=0#qt-science_center_objects

Whitehead, Paul. (2020, February 6). *Total Organic Carbon (TOC) and its Measurement*. Retrieved October 20, 2020, from https://www.elgalabwater.com/blog/total-organic-carbon-toc