

ABSTRACT

The Monroe County Planning Commission along with the Monroe County Conservation District studied 38 stream sites throughout Monroe County in the spring of 2017. The sites were studied based on four parameters, field surface water measurements, laboratory chemistry analysis, macroinvertebrate identification, and habitat assessment.

Monroe County Planning Commission

1 Quaker Plaza, Room #106 Stroudsburg, Pa. 18360-2169 (570) 517-3100 Fax (570) 517-3858 www.monroecountypa.gov

Table of Contents

Methods and	Materials	Page 6
Appendix A.	Surface Water Parameters	Page 8
Appendix B.	Macroinvertebrates	Page 12
Appendix C.	Habitat Assessment	Page 26
Site Map		Page 30
Site Chart		Page 31
Data Pages		Page 32
Conclusions/F	Recommendations	Page 70
Bibliography		Page 72

PREPARED BY MONROE COUNTY

BOARD OF COMMISSIONERS

John R. Moyer, Chairman Charles A. Garris, Vice-Chairman John D. Christy, Commissioner Greg Christine, Chief Clerk/Administrator John B. Dunn, Solicitor

MONROE COUNTY PLANNING COMMISSION BOARD

Rich Schlameuss, Chairman
Brian Barrett, Vice-Chairman
JoEllen Chadwick
Annie Lamberton
Roger McFadden
Sharon Solt
Alan Price Young

MONROE COUNTY PLANNING COMMISSION STAFF

Christine Meinhart – Fritz, Director
Eric Koopman, Senior Lead Planner
Nathaniel Staruch, Senior Planner
Lee Schuler, Vector Control
George Basila, GIS Analyst
Kim Borger, Planner/E-911 Addressing Coordinator
Fallon Horan, Community Planner
Evan Makuvek, Environmental Planner

PROJECT PARTICIPANTS

Lead Agencies:

Monroe County Planning Commission

Program Director: Christine Meinhart - Fritz

Program Coordinator: Evan Makuvek

Monroe County Conservation District District Manager: Adam Schellhammer

Project Associate: Steven Baade Project Associate: Andrea Mikol

Cooperating Agencies:

Pennsylvania Department of Environmental Protection United States Environmental Protection Agency Pinchot Institute for Conservation Brodhead Watershed Association

Entomology Consultants:

Donald Baylor & Ken Ersbak Aquatic Resource Consulting (ARC) RR 715, Saylorsburg, PA 18353

Professional Laboratory Consultant:

Microbac Laboratories 3355 Route 611 Unit 4 Bartonsville, Pennsylvania 18321

Materials & Methods

1. Field Chemistry Sampling (Appendix A)

The following parameters were measured and stored using HANNA Instruments-Multiparameter HI 9829 with a Multiparameter Probe 7609829 field meter and recorded on standard data forms:

- -рН
- -Temperature
- -D.O. Concentration
- -D.O. %
- -Conductivity

2. Lab Chemistry Sampling (Appendix A)

The following table shows water chemistry parameters that were tested by Microbac. Laboratories in the analysis of the stream samples.

Test	Units	Method	PQL
Total Organic Carbon (TOC)	mg/L	SM5310 C-2000	0.500
Aluminum, Total	mg/L	E200.7	0.200
Calcium, Total	mg/L	E200.7	0.500
Iron, Total	mg/L	E200.7	0.100
Magnesium, Total	mg/L	E200.7	0.500
Harness	mg/L	SM2340-B-1997	5.00
Chloride	mg/L	EPA 300.0, Rv 2.1	0.250
рН	pH Units	SM4500 H+ B-2000	0.100
Nitrogen, Total as N (Calc)	mg/L	Calculation	0.500
Ammonia as N	mg/L	EPA 350.1, Rv 2	0.0500
Total Kjeldahl Nitrogen (TKN)	mg/L	EPA 351.2, Rv 2	0.500
Nitrate-Nitrate as N	mg/L	EPA 353.2, Rv 2.0	0.0200
Alkalinity to pH 4.5	mg CaCO₃/L	SM2320 B-1997	20.0
Total Dissolved Solids (TDS)	mg/L	SM2540 C-1997	20.0
Phosphorus - Total as P	mg/L	SM4500 P E-1999	0.0500
Biochemical Oxygen Demand	mg/L	SM5210 B-2001	3.00

Materials & Methods

3. Macroinvertibrate Sampling (Appendix B)

At each site, macroinvertebrates were collected using 12" D-frame nets that were held on the stream bottom. The collector thoroughly disturbed the stream bottom to dislodge any macroinvertebrates from the substrate. This process was repeated 6 times for Riffle/Run streams and 10 times for Multihabitat streams.

Riffle/Run 6 Samples (At least one of each)

- -Fast & Shallow
- -Fast & Deep
- -Slow & Shallow
- -Slow & Deep

Multihabitat 10 Samples (Based on abundance)

- -Cobble/Gravel
- -Snag
- -CPOM (Course Particulate Organic Matter)
- -Submerged Aquatic Vegetation
- -Sand/Fine Sediment

4. Habitat Analysis (Appendix C)

The following tables show Habitat Assessment parameters for Riffle/Run and Low Gradient Streams. Each parameter is rated on a score from 1 to 20. 20 being the highest and 1 being the lowest

Riffle Run Streams

- 1 Instream Fish Cover
- 2 Epifaunal Substrate
- 3 Embeddedness
- 4 Velocity/Depth Regimes
- 5 Channel Alteration
- 6 Sediment Deposition
- 7 Frequency of Riffles
- 8 Channel Flow Statues
- 6 Chamilei How Statue
- 9 Condition of Banks
- Bank Vegetative ProtectionGrazing or Other Disruptive
- 11 Pressures
- 12 Riparian Vegetative Zone Width

Multihabitat/Low Gradient Streams

- 1 Epifaunal Substrate/ Available Cover
- 2 Pool Substrate Characterization
- 3 Pool Variability
- 4 Sediment Deposition
- 5 Channel Flow Status
- 6 Channel Alteration
- 7 Bank Stability (score each bank)
- 8 Vegetative Protection (score each bank)
- 9 Riparian Vegetative Zone Width (score each bank)

Appendix A:

SURFACE WATER PARAMETERS

The chemical characterization of waterways is important for the general description of water quality conditions. The following parameters were measured in the field, water samples were also analyzed by Microbac Laboratories.

Field Measurements

РΗ

The pH of a solution refers to its hydrogen ion concentration. Measurement of pH is one of the most important and frequently used tests in water chemistry. The pH value of most natural waters falls within the range of 4 to 9. The pH scale ranges from 0 (acid) to 14 (base). The majority of waters are slightly basic because of the presence of carbonates and bicarbonates (generally, salts within the geology). Most fish can tolerate pH values from 5.0 to 9.0, however optimum fishing habitats fall within the range 6.5 to 8.2.

TEMPERATURE

Temperature is essential in determining if acceptable standards exist for a particular stream classification. Elevated temperatures from heated water discharges may have a significant ecological effect. Temperature also affects dissolved oxygen levels.

DISSOLVED OXYGEN

D.O. is a measure of oxygen that is dissolved in water. Different levels of D.O. are necessary to support various types of aquatic life. These levels in natural and waste waters are dependent on the physical, chemical, and biochemical activities prevailing in the water body. The minimum D.O. levels are as follows: HQ-CWF 7.0mg / L CWF 5.0. mg/L TSF (February 15th – July 31st) 6.0 mg/L; Remainder of year 5.0

SPECIFIC CONDUCTANCE

Conductivity is a numerical expression of the ability of water to carry an electrical current. It is an indication of the dissolved inorganic solids in the water. The higher the specific conductance, the more impurities are in the water. Freshly distilled w0ater has a conductivity of 0.5 to 2.0 microsiemens/cm. The conductivity of the drinking water in the U.S. generally ranges from 50 to 500 microseimens/cm (μ S). It is an indirect measure of the presence of dissolved solids such as chloride, nitrate, sulfate, phosphate, sodium, magnesium, calcium, and iron.

Laboratory Analysis

TOTAL ORGANIC CARBON

TOC is a measurement of the amount of carbon containing compounds in a sample that can be quantified. This measurement is significant because the amount identified in a stream can be an indicator of the organic character of a stream. The larger the carbon or organic content, the more oxygen is consumed, thus a high content equates to an increase in of microorganisms that could contribute to the depletion of oxygen levels. Samples are preserved in the field by the addition of 1 ml of Sulfuric Acid (H2SO4). There is no numeric standard for TOC.

ALUMINUM

Aluminum is found naturally in the environment and is found in water in a dissolved form. Its concentration is influenced by multiple factors including pH, surface water flow over soil and bedrock, and groundwater flow through soil horizons and underlying geologic material. The Aluminum concentrations of water in healthy streams and rivers usually range from 0.001 to 0.05 mg/L.

CALCIUM

Calcium occurs most commonly in sedimentary rocks in the minerals calcite, dolomite and gypsum. Calcium is an important determinant of water harness, and it also functions as a pH stabilizer, because of its buffering qualities. Rivers generally contain 1-2 mg/L calcium, in limestone areas; rivers may contain calcium concentrations as high as 100 mg/L. There is no numeric standard for calcium.

IRON

Surface and groundwater naturally contain iron along with metals. Rainwater infiltrates soil horizons and iron bearing rocks and dissolves the iron into the water solution. There are two kinds of iron that occur in water. The first kind is called ferrous which is soluble in the water, this results in clear colorless water. The other state is called ferric, which results in a reddish-brown color because the iron is not completely dissolved in the water. Iron can also be combined with naturally-occurring acids (tannins) which will stain the water a tea color.

MAGNESIUM

This element is essential to chlorophyll and red blood cells. Magnesium commonly occurs in the minerals of magnesite (MgCO₃) and dolomite. It contributes to water hardness and is used in alloys, fertilizers, pharmaceuticals, and foods.

Laboratory Analysis (continued)

TOTAL HARDNESS

Hardness is defined as the total amount of calcium and magnesium salts that are present in the water. Hard water aids buffering capacity. Water can be defined by its total hardness as follows:

Soft Water 0 - 60 mg/L

Moderately Hard Water 60 - 120 mg/L

Hard Water 120 - 180 mg/L

Very Hard Water 180 mg/L and up

CHLORIDES

Chlorides are salts that contain chlorine and metal. Common Chlorides are sodium chloride, calcium chloride and magnesium Chloride. Most productive fish habitats have a chloride concentration of less than 170 mg/L. The recommended maximum chloride levels are 250 mg/L for water supply.

NITROGEN

Nitrate plus nitrite as nitrogen. The maximum recommended level for water supply is 10 mg/L as Nitrogen.

Ammonia (NH3)

Ammonia is naturally present in surface and ground water and in wastewater. Pure ammonia is strong smelling and colorless. In nature, ammonia is formed by the action of bacteria on proteins and urea. Ammonia concentrations of 0.06 mg/L can cause gill damage in fish; 0.1 mg/L may indicate domestic or agricultural wastes and 0.2 mg/L and above is lethal to trout.

NITRITE (NO2)

Nitrite is the intermediate stage between nitrate and ammonia. It is relatively short-lived because it is quickly converted to nitrates by bacteria. Nitrite concentrations in drinking water seldom exceed 0.1 mg/L. There is no numeric standard for nitrite.

NITRATE (NO3)

Nitrate is found only in small amounts in domestic wastewater and is a major ingredient in farm fertilizer. During precipitation events, varying amounts of this chemical wash into nearby waterways. Nitrates stimulate the growth of phytoplankton and algae. When these photosynthetic organisms die, bacteria consume the dead organic material. This process also requires oxygen which depletes dissolved oxygen levels in the water and the fish may not be able to respire. Because Nitrate can be the limiting nutrient for plant growth in many ecosystems, the discharge from a septic tank into the aquatic environment can trigger prolific plant growth including algal blooms. There is no numeric standard for nitrate.

Laboratory Analysis (continued)

TOTAL KJELDAHL NITROGEN

T.K.N. is the sum of organic nitrogen and ammonia nitrogen. Samples are preserved in the field by the addition of 1 ml of Sulfuric Acid (H_2SO_4). There is no numeric standard for TKN.

TOTAL ALKALINITY

Alkalinity measures the water's ability to buffer acid or acid neutralizing capacity. It indicates the water's ability to protect fish and other aquatic life against sudden changes in pH. The best fishing waters are those with alkalinity of 100 - 120 mg/L. The minimum level of total alkalinity for aquatic life buffering capacity is 20 mg/L, except where natural conditions are less. Stream alkalinity can be influenced by geologic material, soil horizons, salts, plant activities and certain industrial wastewater discharges. Water flowing through Carbonate rich limestone generally has high alkalinity – hence good buffering capacity. Conversely, areas rich in granites and some conglomerates and sandstones may have low alkalinity and therefore poor buffering capacity.

T.D.S.

Total dissolved solids (T.D.S.), also termed total filterable residue, refers to the portion of residue that passes through a filter of a particular size. The DEP, as well as the EPA, have established secondary maximum contaminant levels of 500 mg/L of TDS for the Commonwealth's drinking water and waterways. The maximum recommended value for T.D.S. is 750 mg/L.

TOTAL PHOSPHORUS

Total Phosphorus is a measure of all the forms of phosphorus (dissolved or particulate) that are found in a sample. It occurs in natural waters and wastewaters almost solely in the form of phosphates. Phosphates enter waterways from animal wastes, phosphate rich rocks, fertilizers, and from the detritus of aquatic organisms. Phosphorus is essential to the growth of organisms and can be the limiting nutrient to plant growth. If high concentrations are present in streams the algae can grow more rapidly. This increase in algae is eventually consumed by bacteria which require oxygen. This process reduces dissolved oxygen in the water which can impact fish populations. Phosphate levels below 0.03 mg/L are generally considered to be unpolluted. The recommended maximum level is 0.01 mg/L for rivers and streams.

BIOLOGICAL OXYGEN DEMAND

BOD is a measure of the dissolved oxygen required for the complete breakdown of organic matter, by aerobic bacteria over a five-day period. It is a key criterion used where organic loading must be restricted to maintain desired levels of dissolved oxygen in water. Sources of BOD, in addition to direct loading from STPs, include decaying algae, macrophytes and other biota. In streams that are polluted with sewage or high levels of other nutrients, the oxygen use or demand by microorganisms will be high, leaving little oxygen for other aquatic organisms. Most pristine rivers will have a 5-day carbonaceous BOD below 1 mg/L.

Appendix B:

Benthic Macroinvertebrates

What is a Macroinvertebrate?

A macroinvertebrate is an organism that is large enough to see with the naked eye (macro) and lacks a vertebrate (invertebrate). The organisms that are collected for this study are called benthic macroinvertebrates. Benthic refers to the bottom layer of an aquatic ecosystem including underneath stream sediment. These organisms include mayflies, caddisflies, stoneflies, snails, clams, crayfish, freshwater shrimp, beetle larvae, midges, leeches, dragonflies, and more.

Why collect Macroinvertebrates?

- They are relatively easy to collect.
- They play a key role in the ecosystem's food web.
- They are used as bio indicators for environmental stress and can show varying responses to water chemistry and physical habitat.
- Due to their relative immobility (unlike fish) they cannot move upstream or downstream to avoid poor water conditions.
- They are extremely diverse. Different macroinvertebrates will live in different water bodies due to water conditions, available food, and absence or abundance of sediment, nutrients, and detritus (dead organic matter).

Macroinvertebrate Analysis

The protocols used in the development for the riffle/run Index of Biotic Integrity (IBI) were conducted from small first through third order riffle/run type streams, which totaled a drainage area of less than 50 square miles. The second protocol type is the multi-habitat assessment for low-gradient streams, which involved sampling a variety of habitat types. The difference between the two assessment protocols involved sampling different micro-habitats for macroinvertebrate collections and different habitat evaluation categories. These bio assessments were employed to cumulatively evaluate the ecological conditions of streams that are present within Monroe County.

Metric Calculations

The following are the riffle/run metrics used for the benthic macroinvertebrate analysis. Metrics are the various counts, indexes, and ratios computed from the results of the subsamples.

Different metrics convey different types of information about the macroinvertebrate community. For example, taxa richness is an index of diversity and the Hilsenhoff Biotic Index measures an organism's pollution tolerance. By using a set of metrics that measures multiple aspects of the macroinvertebrate community, a complete picture of a community can be attained. This enables the reader to understand the importance of measuring the relative stability of the aquatic community.

The following is a list of metric calculations utilized during the 2017 study:

<u>Freestone Riffle/Run (6 D Frame):</u>

Modified Beck's Index (version 3)

MBI metric is projected to decline in assessment score when anthropogenic stress to a stream ecosystem increases, therefore representing the loss of pollution-sensitive taxa. It should be noted that this index metric for this project, while similar in name and concept, differs slightly from the Beck's Index used in DEP's multihabitat protocol for assessing biological condition of low gradient pool-glide type streams.

EPT Taxa Richness

EPT Taxa Richness metric is a count of the number of taxa belonging to the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT) in a sub-sample that represents community structure. These orders are commonly referred to as mayflies, stoneflies, and caddisflies, respectively. This metric is expected to decrease in value with increasing anthropogenic stress to a stream ecosystem, reflecting the loss of taxa from these largely pollution-sensitive orders.

Total Taxa Richness

Total Taxa Richness is a community structure metric, which is a count of taxa in the sub sample. Generally, this metric is expected to decrease with increasing anthropogenic stress to the ecosystem, reflecting loss of taxa and increasing dominance of a few pollution tolerant taxa.

Shannon Diversity Index

SDI is a taxonomic composition metric that measures taxonomic richness and evenness of individuals across taxa of a sub-sample. This metric is expected to decrease in values with increasing anthropogenic stress to a stream ecosystem.

Hilsenhoff Biotic Index

HBI is a taxonomic composition metric and is calculated as an average pollution tolerance value weighted by the number of individuals of each taxa in the sub-sample. The Hilsenhoff Biotic Index generally increases with increasing ecosystem stress.

Percent Sensitive Individuals

Percent Sensitive Individuals is a taxonomic composition metric which is the percentage of individuals with pollution tolerance values of three or less in a sub-sample and is expected to decrease in value with increasing anthropogenic stress to a stream ecosystem.

Index Calculation-Riffle/Run:

Through the combination of these various metrics noted previously, standardization is needed. Table 1 depicts the standardization table with the associated standardized and adjusted metric scores with the total producing the IBI score. This index is a way to integrate data that is collected from the above equations. The sum of these specific metric equations constructs an IBI, which then can be related to reflect the ecology and impacts to the aquatic community being studied. There are six metrics involved, the Hilsenhoff Biotic Index (HBI) is the only one predicted to increase in value if the community is stressed. The other five IBI metrics are predicted to decrease in value if the community is exposed to increased stress. The index calculation and standardization is as follows.

Table 1. Metric Standardization Equations and Index calculations for sub-sampled sites.

Metric	Standardized Equation	Observed Metric Value	Standardized Metric Score	Adjusted Standardized Metric Score Maximum = 1.000
Modified Beck's	Observed value /			
Index	33			
EPT Taxa	Observed value /			
Richness	19			
Total Taxa	Observed value /			
Richness	38			
Shannon	Observed value /			
Diversity Index	2.86			
Hilsenhoff Biotic	(10 - Observed			
Index	value) / (10 –			
	1.89)			
Percent	Observed value /			
Intolerant	84.5			
Individuals				
Average of adjuste	ed standardized core	metric score	es * 100 = IBI	
Score				

Aquatic Life Use Attainment Benchmarks

Table 2 depicts the Aquatic Life Use (ALU) IBI scoring benchmarks utilized by DEP for assessment purposes. DEP implements a multi-tiered benchmark decision process for small wadeable freestone riffle/run streams in Pennsylvania that incorporates sampling season as a factor for determining ALU attainment and impairment; this process is outlined in the diagram below (PADEP 2009). Title 25, Chapter 93 of the Pennsylvania Code provides further information on these uses.

Table 2. Aquatic Life Use (ALU) IBI scoring benchmarks for Instream Comprehensive Evaluation (ICE) assessment purposes.

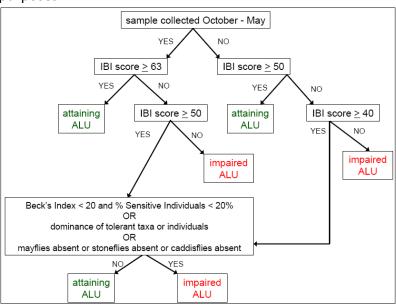


Table 2 depicts the adjusted and standardized Aquatic Life Use (ALU) IBI scoring benchmarks for ICE assessment purposes. For samples collected from smaller streams between October and May, an IBI score > 63 results in ALU attainment and an IBI score < 50 results in ALU impairment; an IBI score between 50 and 63 requires further evaluation to determine ALU impairment – three guidelines may be used:

- (1) If the Beck's Index score is < 20 and the % Sensitive Individuals in the sub-sample is < 20%, the ALU should be impaired without compelling reason otherwise;
- (2) If the sample is dominated by tolerant taxa or individuals, the ALU should be impaired without compelling reason otherwise; or
- (3) If mayflies, stoneflies or caddisflies are absent from the sub-sample the ALU should be impaired. For samples collected between June and September from smaller streams, an IBI score > 50 results in ALU attainment and an IBI score < 40 results in ALU impairment; an IBI score between 40 and 50 requires further evaluation to determine ALU impairment, guided by the same three guidelines outlined above for October to May samples scoring between 50-63.</p>

Multi-habitat - Low Gradient (10 D Frame):

EPT Taxa Richness - Refer to riffle/run definition. **Total Taxa Richness** - Refer to riffle/run definition.

Modified Beck's Index (version 4) - This is a pollution weighted taxa richness measure that is based on the Hilsenhoff Biotic Index Score. It is a modified Beck's Index giving organisms with a Hilsenhoff score of 0 or 1 two points and Hilsenhoff scores of 2, 3, or 4 are given 1 point. This metric differs slightly from the Beck's Index used in DEP's riffle/run protocol for assessing the biological condition of freestone type streams.

Shannon Diversity Index - Refer to riffle/run definition. **#Caddisfly Taxa** - Total number of Caddisflies (Trichoptera) in the sub-sample **#Mayfly Taxa** - Total number of Mayflies (Ephemeroptera) in the sub-sample

Index Calculation-multihabitat:

Through the combination of the various metrics noted above, normalization is needed. This index is a way to integrate data that is collected from the above equations. Table 3 depicts the standardization table with the associated normalized and adjusted metric scores with the total generating an IBI score. The sum of these specific metric equations builds an IBI, which then can be related to reflect the ecology & impacts to the aquatic community being studied. Of the six metrics utilized, all are predicted to decrease in value if the community is stressed. The normalized scores above 100 are adjusted to a score of 100. The index calculation and normalization is as follows:

Table 3. Normalization of Metric and Total Biological Score Calculation.

Metric	Standardized Equation	Observed Value	Normalized Metric Score	Adjusted Metric Score Maximum = 100
EPT	(Observed value / 17) x 100			
Taxa Richness	(Observed value / 31) x 100			
Beck4	(Observed value / 22) x 100			
Shannon Diversity	(Observed value / 2.43) x 100			
% Caddisfly Taxa	(Observed value / 11) x 100			
% Mayfly Taxa	(Observed value / 6) x 100			
	Total Biological Score		·	

Aquatic Life Use Attainment Benchmarks

The following depicts the aquatic life use (ALU) IBI scoring benchmarks utilized by DEP for assessment purposes. This multimetric approach simplifies management decisions, being presented as a single index score (PADEP 2007). If the total benchmark score of 55 is not reached, then the stream reach is not attaining the threshold for aquatic life. Title 25, Chapter 93 of the Pennsylvania Code provides further information on these uses.

The following summaries are presented in the sequence they were sampled. They depict the macroinvertebrate community per site, specifically genus level taxonomy, water pollution tolerances values (0 intolerant to 10 tolerant), trophic codes and the statistics that comprise the total standardized biological score. The trophic code is a general classification system, which is based on what type of feeding mechanism the macroinvertebrate utilized or how the food is acquired. These categories are presented to facilitate the descriptions on the following pages:

- SC Scrapers: graze or scrape materials from mineral and organic substrates
- **SH Shredders**: chew on plant and some animal material, breaking it down into smaller particles feeding directly on living vascular hydrophytes, or gouge decomposing wood submerged in streams
- **CG Collector/Gatherers**: feed primarily on fine pieces of decomposing particulate organic matter (< 1 mm diameter) deposited in streams;
- FC Filterer/Collector: remove particulate matter from suspension
- **PR Predators**: Organisms that feed on animal tissue by either engulfing or piercing and sucking body contents of prey (Merritt & Cummins 1984).

Monroe County executed two progressive stream evaluation surveys, the riffle-run and the multihabitat protocols, which are conducted within a 100 meter stream reach. These biological screening protocols were modified from the United States Environmental Protection Agency (EPA) Rapid Bioassessment Protocols (RBPs), for assessing stream macroinvertebrate communities (PADEP 2009). These biological screening protocols are specifically designed per stream type, to provide intensive field surveys and water quality assessment approaches. The riffle-run Index of Biological Integrity (IBI) applies to benthic macroinvertebrate samples collected using a handheld 500-micron mesh D-frame net, which employed the semi-quantitative (PADEP-RBP) method, applied for each Instream Comprehensive Evaluation (ICE). Staff conducted six swipes from shallow, fast and slow riffle areas within a 100-meter stream reach. Each swipe disturbed approximately one square meter, immediately upstream of the net for approximately one minute, to an approximate depth of 10 cm, as substrate permits (PADEP 2009). The second sampling protocol is the multihabitat approach for low gradient streams, which required 10 jabs utilizing a 500-micron mesh D-frame net distributed between

five possible habitat types: Cobble/Gravel Substrate; Snag; Coarse Particulate Organic Matter (CPOM); Submerged Aquatic Vegetation (SAV); Sand/Fine Sediment) (PADEP 2007).

For the riffle-run dominated streams, each sample is composited into one container preserved

with 95% ethanol in the field and transported to the contracted entomologist for enumeration and identification and placed into a pan marked with 28 four square inch grids. Debris from four grids is randomly selected and extracted using a four-square inch circular "cookie cutter," then placed into another identical empty pan. From this second pan, organisms are randomly selected from the grids until a 200-organism sub-sample (+/- 40 organisms) is obtained. Organisms in the sub-sample are identified according to taxonomic groupings and enumerated. Midges are identified to the family level of Chironomidae. Roundworms and proboscis worms are identified to the phylum level, flatworms and segmented worms, aquatic earthworms, and tubificids are identified to class. Water mites are identified as Hydracarina, and all other macroinvertebrates are identified to genus level (PADEP 2009). Adam For low gradient dominated streams, each sample is composited into one container preserved with 95% ethanol in the field and transported to the contracted entomologist for enumeration and identification and placed into a pan marked with 28 2" x 2" grids. Debris from four grids is randomly selected and extracted until a 200-organism sub-sample (+/- 20 %) is obtained. Organisms in the sub-sample are identified according to taxonomic groupings. Midges are identified to the family level of Chironomidae. Roundworms and proboscis worms are identified to the phylum level; flatworms are identified to Phylum Turbellaria; segmented worms, aquatic earthworms and tubificids are identified to Class Oligochaeta. Water mites are identified as Hydracarina, weevils to family, sand flies to family Ceratopogonidae, Decapoda, Gastropoda, and Pelecypoda to family, and all other macroinvertebrates are identified to genus level (PADEP 2007). The specifics of the macroinvertebrate analyses are discussed in Appendix B of this report.

Precision Quantification

To quantify precision methods, two of the biological samples were replicated and collected by the same investigator to minimize variability, and complies with the PADEP's quality assurance manual to verify identification work performed on macroinvertebrates. The Field data sheets are available for review at the MCPC office.

Quality Assurance

Accuracy was determined through the use of routine laboratory protocols that required random spiking of samples as per *consistency with the Quality Assurance Manual for* PADEP. Data quality requirements were maintained in the field throughout the collections. Calibration of field equipment was performed daily.

During the field sampling, water samples were collected at mid-depth and mid-channel. These water samples were stored in coolers with ice packs in order for stabilization and then transported to Microbac Laboratories, which is EPA certified for analysis. The specifics of the chemical parameters are discussed in Appendix A of this report.

2017 MONROE COUNTY MACROINVERTEBRATE DATA

TAXON	ution ance	NUMBER COLLECTED AT SAMPLING STATION 01 02 03 04 05 06 07 08 09 10 11 12 13												
ORDER	oll oll	01	02	03	04	05	06	07	08	09	10	11	12	13
GENERA/SPECIES	<u>~</u>	OI	UZ	03	04	US	00	07	UO	פט	10	++	12	13
AMPHIPODA (shrimp)														
Gammarus spp.	4	1	1						4				2	7
BIVALVIA (clams)														
Pisidium spp.	8													5
COLEOPTERA (beetles)														
Stenelmis spp.	5		5	6	3	18	3	8	14		14	4	2	2
Promoresia spp.	2		3						2					
Dubiraphia spp.	6	2	1										1	
Optioservus spp.	4	2		2		1		2						1
Ectopria spp.	5													
Psephenus herricki	4	2		20	14	14	20	2	4		24	27	1	
Hydrochus spp.	5												1	
Lutrochus spp.	6												1	
DIPTERA (true flies)														
Chironomidae	6	18	5	13	24	16	20	23	133		7	24	5	26
Blepharicera spp.	0				2							1		
Tipula spp.	4													
Hexatoma spp.	2						1			2		1		
Atherix spp.	2					1								
Antocha spp.	3				2		4	1				1		
Simulium spp.	6	1	2		1				3					2
Dicranota spp.	3								1		1			
Empididae spp.	6				2		4	3				1		igspace
Chrysops spp.	7	1			_									
Prosimulium spp.	2				2					33				
Aedes spp.	8					1								\vdash
Dolichopodidae spp.	4			4										
EPHEMEROPTERA (mayflies)			_		2	-	-	- 1	-	27	12	0		1
Epeorus spp.	0	13	5 17	18	3	6 3	5 5	7	6	27	12 18	9	6	1
Mccaffertium spp. Stenacron spp.	3 4	13	1/	18		3	3	1		1	18	1	В	
Ephemerella spp.	1	59	42	19	27	8	24	28	2	19	59	13	138	73
Eurylophella spp.	4	59	1	10	1	8	24	28	1	19	59	13	138	/3
Drunella spp.	1	9	12	19	2	107	44	55	1	1	10	7	1	
Seratella spp.	2	9	12	19		107	1	4	1	1	2	- ' -	1	
Paraleptophlebia spp.	1				1			-		2	17	1		\vdash
Cinygmula spp.	1						-			2	17	-		\vdash
Rithrogena spp.	3			-			-			6		-		\vdash
Heptageniidae	3		4				1			۰	3			
Isonychia spp.	3	1	34	8	3	3	1		1		5			
Baetidae	6		<u> </u>	_ <u> </u>										
Baetis spp.	6			2	1	1			1	1		3	2	1
Plauditus spp.	6		1		_									
Acentrella spp.	4		1	8	13	15	22	32	17	1	4	22		
GASTROPODA (snails)														
Physinae	8													3
Bithynia spp.	7												1	7
Planorbidae	6				1									2
HIRUDINEA (leeches)	8													
Myzobdella spp.											1			
ISOPODA (sowbugs)														
Caecidotea spp.	6	1												
MEGALOPTERA (hellgramites)														
Sialis spp.	6	2	1											
Corydalus spp.	4													
Nigronia spp.	2	1	3		4	1	3				1	2		

TAXON (continued)	NUMBER COLLECTED AT SAMPLING STATION (continued) 01 02 03 04 05 06 07 08 09 10 11 12 13													
ORDER	oll o	01	00	00	04	Δ Ε	00	07	00	00	10	44	12	12
GENERA/SPECIES		01	02	03	04	05	06	07	08	09	10	11	12	13
ODONATA (dragon flies)														
Ophiogomphus spp.	1					1					1			
Lanthus spp.	5		3			1	1	1			1	1	1	
Gomphidae	4	1	1	1	2		1							
Argia spp.	6		_											
OLIGOCHAETA (worms)	10		2	1		1	3				1	3		
PLECOPTERA (stoneflies)														
Leuctra spp.	0		1	2	3							3		
Taeniopteryx spp.	2													
Amphinemura spp.	3		3	6								69	27	10
Alloperla spp.	0									16				
Pteronarcys spp.	0			<u> </u>	1			2		17				<u> </u>
Acroneuria spp.	0		2	5	4	4	6	4			5	4		<u> </u>
Paragnetina spp.	1			1	4	2	2	3			5	2		
Agnetina spp.	1	1			16	1				5				<u> </u>
Perlesta spp.	4	-		4		4	-				-	-		1
Suwallia/Sweltsa spp.	0			1	4	1	3			20		5	2	
Tallaperla spp.	0				- 1					30			2	
Diploperla spp. Diura spp.	2				1					2				
Cultus spp.	2										2			
Isoperla spp.	2				3					4			2	
TURBELLARIA (flatworms)					<u> </u>					-				
Macrostemum spp.	8													
TRICHOPTERA (caddisflies)	- J													
Chimarra spp.	4			6		1	1	1	2				1	
Wormaldia spp.	0		1											
Dolophilodes spp.	0				14	2	6	2				3		
Neophylax spp.	3				5									
Hydropsyche spp.	5	5			1								3	5
Ceratopsyche spp.	5	6	7	3	10	14	15	7	4	3	9		2	
Cheumatopsyche spp.	6	7	19	16	5	16	13	9	6	4	23	2	5	5
Diplectrona spp.	0			1						4		9		
Rhyacophila spp.	1		4	2	1			2	1	8				
Lepidostoma spp.	1	1			4		1		3		2			1
Psilotreta spp.	0				2									
Micrasema spp.	2		4											
Polycentropus spp.	6		1		3		1							
Nectopsyche spp.	3													
Brachycentrus spp.	1				1									
Oecetis spp.	8								1					
Pycnopsyche spp.	4													2
TOTAL		135	187	175	192	240	211	198	208	188	227	218	206	154
METRICS														
Total Taxa Richness		21	30	25	38	26	27	22	21	21	24	25	22	18
	·													
Shannon Diversity Index	·	2.06	2.65	2.80	3.09	2.16	2.66	2.33	1.57	2.49	2.56		1.41	1.91
EPT Taxa Richness	ļ '	7	14	14	21	12	13	12	9	16	12	11	9	5
Hilsenhoff Biotic Index	. '	2.89	2.93	3.34	2.73	2.83	3.05	2.84	5.23	1.01	2.71	3.09	1.93	3.32
Percent Intolerant Individuals		63%	72%	47%	58%	59%	51%	57%	9%	95%	63%	60%	86%	54%
Modified Beck's Index]	9	19	21	38	25	22	21	13	31	21	31	9	12

Index of Biotic Integrity (New) 59.7 80.0 73.5 93.0 87.1 89.6 84.6 53.2 86.1 88.6 76.0 64.4 68.7

2017 MONROE COUNTY MACROINVERTEBRATE DATA

TAXON	Pollution Folerance				NUM	BER C	OLLEC.	TED A1	SAMI	PLING	STATIO	N		
ORDER	ollu	14	15	16	17	18	19	20	21	22	23	24	25	26
GENERA/SPECIES	<u> ۲</u>	14	12	10	1/	10	19	20	21	22	23	24	25	26
AMPHIPODA (shrimp)														
Gammarus spp.	4		8						1			1	5	
Lutrochus spp.	6		Ť					1				<u> </u>		
Microcylloepus spp.	2													
Stenelmis spp.	5								2					
Dubiraphia spp.	6		2						1			1		
Promoresia spp.	2	1		5	1		1	1		10	2		2	8
Stenelmis spp.	5	28	24										3	_
Ectopria spp.	5						1							
Optioservus spp.	4	7		1	12		9					3	7	2
Agabus spp.	5													
Micronychus spp.	2													
Psephenus herricki	4	9	7					25	7	1		11	12	
Cambarus spp.	6				1					<u> </u>				
DIPTERA (true flies)														
Chironomidae	6	1		19	2		28	24	19	24	65	17	40	5
Bezzia spp.	6													
Hemerodromia spp.	6	1												1
Tipula spp.	4		1								1			1
Hexatoma spp.	2				2		1			2	2			9
Atherix spp.	2													
Antocha spp.	3		1									1	3	3
Empedidae spp.	6	4									2	1		
Dicranota spp.	3	·									1	1		
Prosimulium spp.	0				2							<u> </u>		2
Simulium spp.	6	1		7			4	2	4		10	6	3	
EPHEMEROPTERA (mayflies)				,			•					Ť		
Epeorus spp.	0			18	56		1	4	1	1	2	1		41
Mccaffertium spp.	3		1	6	1			14	3	3	16	17	2	3
Stenacron spp.	4			1										
Ephemerella spp.	1	82	146	36	41		38	51	54	48	24	30	17	47
Eurylophella spp.	4			4			1		4	1	6			1
Drunella spp.	1	1	4	21				7	17	4	10	9	15	1
Attenuatella spp.	2								1			1		
Heterocloen spp.	2													
Habrophlebiodes spp.	6						1			1				
Paraleptophlebia spp.	1			3	19		2	39		5	1			11
Isonychia spp.	3	2		6				4	6		5	5	1	
Ameletus spp.	0													
Caenis spp.	7													
Baetis spp.	6				6		2	11	2	14	5	1		12
Acerpenna spp.	6									2				1
Acentrella spp.	4							4	2		7	17	9	
Plauditus spp.	6								3					
Diphetor spp.	6				1					7				21
Cinygmula spp.	1				8									
Heptageneidae spp.	3		2											
Ameletus spp.	0													4
MEGALOPTERA (hellgramites)														
Sialis spp.	6			1					1					
Nigronia spp.	2	1	2	8		İ		3	10		5			1
Corydalus spp.	4	1	İ									1		

TAXON (continued)	Pollution Tolerance													
ORDER	oll ole													
GENERA/SPECIES	ع ک	14	15	16	17	18	19	20	21	22	23	24	25	26
ODONATA (dragon/damsel flies)	4													
Gomphidae	5			5				1			1			
Lanthus spp.	4									3				
Ophiogomphus spp.	1	1												
OLIGOCHAETA (worms)	10											7		
PLECOPTERA (stoneflies)														
Paraleuctra spp.	0													
Leuctra spp.	0				1					1				
Amphinemura spp.	3						126	7	8					<u> </u>
Pteronarcys spp.	0			3			2	3		3				2
Alloperla spp.	0						_			3	_			
Acroneuria spp.	0	5		5			2	9	7	2	6	4	2	1
Paragnetina spp.	1			3						1	2		1	2
Agnetina spp.	0			1	1					2	1			7
Suwallia/Sweltsa spp. Perlesta spp.	4		-		1		-		1		1			6
Tallaperla spp.	0			1	13				1	1				1
Diploperla spp.	2			1	13					1				1
Cultus spp.	2													
Isoperla spp.	2			3	1		1	4		3				3
Isogenoides spp.	0			,			_	-			3			
Diura spp.	2													1
Clioperla spp.	2			2										6
TRICHOPTERA (caddisflies)														
Chimarra spp.	4			1					2					1
Wormaldia spp.	0						1							
Parapsyche spp.	0				5									
Dolophilodes spp.	0			2				1			11			
Hydropsyche spp.	5	1						1	3					
Cheumatopsyche spp.	6	27	4	7			2	3	27	1		16	63	
Ceratopsyche spp.	5	9	2	1	2		1	4	3	4	3	1	11	3
Diplectrona spp.	0			8	12		2	17		2				
Rhyacophila spp.	1			10	4		6	1		9	2		2	7
Glossosoma spp.	0	1											4	
Psychomyia spp.	2	2											1	
Protoptila spp. Lepidostoma spp.	1		1							1	2	3		3
Leucotrichia spp.	6		1							1		3		3
Micrasema spp.	2			1					1	4			2	
Neophylax spp.	3	6								7	1	1		2
Brachycentrus spp.	1	l –								1				
Agapetus spp.	0								2		1			
Nectopsyche spp.	3													
Mystacides spp.	4													
Polycentropus spp.	6			1					2		1			
Pycnopsyche spp.	4	3	2	2										
Psilotreta spp.	0									2				1
TOTAL		194	207	192	191		232	241	194	165	198	156	201	222
METRICS														
Total Taxa Richness		23	15	32	21		21	25	29	30	29	25	21	34
Shannon Diversity Index		2.08	1.22	2.92	2.25		1.63	2.59	2.63	2.65	2.56	2.65	2.33	2.87
EPT Taxa Richness		9	6	22	12		11	14	15	19	17	12	11	21
Hilsenhoff Biotic Index Percent Intolerant Individuals		3.02 53%	1.96 76%	2.21 74%	1.05 87%		79%	2.41 68%	3.12 57%	2.75 65%	3.55 49%	3.67 46%	4.40 26%	2.12 74%
Modified Beck's Index		17	7	35	32		24	26	17	41	33	14	17	41

63.9 59.5 95.5 81.6 70.2 80.5 76.0 91.6 81.9 78.6 69.2 97.0

2017 MONROE COUNTY MACROINVERTEBRATE DATA

TAXON	NUMBER COLLECTED AT SAMPLING STATION 27 28 29 30 31 32 33 34 35 36 37 38												
ORDER		27	28	29	30	31	32	33	34	35	36	37	38
GENERA/SPECIES		21	20	29	30	31	32	33	34	33	30	3/	30
AMPHIPODA (shrimp)													
Gammarus spp.	4							2	10				
COLEOPTERA (beetles)	7								10				
Stenelmis spp.	5		7	1				11				25	
Promoresia spp.	2		,				24	1		3	3	1	
Stenelmis spp.	5				2		1		72	<u> </u>	13		5
Optioservus spp.	4	2		2			7		,,,	2	13		
Ectopria spp.	5						1						
Psephenus herricki	4	8	8		5	20		1	4			2	
DIPTERA (true flies)	7	_	U			20							
Chironomidae	6	1		2	26	32	14	21		14	30	2	17
Blepharicera spp.	0	2		1	20	32	14			17	30		- 17
Hemerodromia spp.	6			14				1					
Empididae	6			<u> </u>		3	1						
Tipula spp.	4	1		1		3							
нехаtота spp.	2	5	1	9	3	1	1	1		5			
Antocha spp.	3	J	2	1	4		1	 		11			
Prosimulium spp.	2	4		 	4	1	1	 					$\vdash \vdash \vdash$
Simulium spp.	6	4		-		1	2						$\vdash \vdash \vdash$
Certopogonidae spp.													
	6	6					1						1
Dicranota spp.		ь						1					\longmapsto
Chrysops spp.	7						1	1	1			1	$\vdash \vdash \vdash$
Leptotarsus spp.	4								1			1	
EPHEMEROPTERA (mayflies)	0	47	- 1	40	11	2	_	_		25	4	4	
Epeorus spp.	0	47	1	49	11	2	2	5	20	35	1	1	17
Mccaffertium spp.	3		1	3	9	_	5	4	20		11	7	17
Stenacron spp.	4	40			-	6						1	\longmapsto
Cinygmula spp.	1	10	4.4	42	5	42	70	20	_	3			
Ephemerella spp.	1	56	14	42	30	12	78	39	5	44	9	9	6
Eurylophella spp.	4	4						3	3			11	2
Caenis spp.	7												
Serratella spp.	2	_	0.0		4-		1	5			1	4.0	
Drunella spp.	1	3	96	2	17	75		4	8	1	8	46	
Heterocloeon spp.	2										_	1	
Paraleptophlebia spp.	1				6		5			1	2		1
Leptophlebia spp.	4												
Habrophlebiodes spp.	6								_		20		
Isonychia spp.	3		6			2			3		20	6	
Ameletus spp.	0		-				2	_		10			
Baetis spp.	6	2	3	4	34	1	6	3		10			ļ
Diphetor spp.	6										4.5		
Acerpenna spp.	6		L		<u> </u>			ļ .			10		igsquare
Acentrella spp.	4		3		6	1		1					igsquare
Cynigmula spp.	1												igspace
GASTROPODA (snails)													
Physidae spp	8									1			
ISOPODA (sowbugs)													
Caecidotea spp.	6						1	2	2				igspace
MEGALOPTERA (hellgramites)													
Sialis spp.	6												
Nigronia spp.	2		1								7		1
Corydalus spp.	4								3			2	L

TAXON (continued)	90											
ORDER	27											
GENERA/SPECIES	⊇ 27	28	29	30	31	32	33	34	35	36	37	38
ODONATA (dragon/damsel flies)												
Boyeria spp. 2												1
Ophiogomphus spp. 1	1				1					2	4	
Argiogomphus spp. 4	_											2
Dromogomphus spp 4												1
Gomphus spp. 5						4						
Lanthus spp. 5						7						
Argia spp. 6								2				
Macromia spp. 2											1	
Somatochlora spp. 1											1	
Calopteryx spp. 6											1	
OLIGOCHAETA (worms) 10			1	1			9					
PLECOPTERA (stoneflies)					_							
Leuctra spp. 0	1	1			2	9	4					
Amphinemura spp. 3	9				2	2	1		12			
Pteronarcys spp. 0 Acroneuria spp. 0	7	3	<u> </u>	2		3	1		12	7	13	3
Paragnetina spp. 1	+ ′	2		1	1	3	1				13	3
Agnetina spp. 1			9	6	1					14	1	
Suwallia/Sweltsa spp. 0	24		3			2				14		
Paranemoura spp. 2	27											
Tallaperla spp. 0						4			2			
Diploperla spp. 2				1								
Diura spp. 2									1			
Isoperla spp. 2			5	1		10			4			
TURBELLARIA (flatworms)												
TRICHOPTERA (caddisflies)												
Chimarra spp. 4		1		1			2	22		11		4
Mystacides spp. 4												1
Dolophilodes spp. 0		1	1	11	1		1	10	3			
Hydropsyche spp. 5		44			1		2	10		22	26	1
Cheumatopsyche spp. 6		11	26	10	14	1	3	45	8	22	26	3
Ceratopsyche spp. 5 Diplectrona spp. 0	7	35	26 3	10	34	<u>2</u> 5	2		32 3	10	5	1
Rhyacophila spp. 1	4	1	3	1		4	2		6		2	2
Nyctiophylax spp. 7	4		3	1		4			U			1
Neureclipsis spp. 7 Neureclipsis spp. 7											1	
Lepidostoma spp. 1		2	2	13	2			2				
Neophylax spp. 3									1			
Polycentropus spp. 6									1			
Pycnopsyche spp. 4							1		1		7	
Leptoceridae 4							1					
Macrostemum spp. 3											2	
Oecetus spp. 8												1
TOTAL	205	198	184	206	218	208	127	212	204	181	179	71
METRICS												
Total Taxa Richness	22	19	22	24	23	32	26	16	24	18	26	20
Shannon Diversity Index	2.34	1.85	2.27	2.69	2.15	2.52	2.51	2.07	2.50	2.61	2.51	2.41
EPT Taxa Richness	12	12	11	16	12	14	14	7	18	10	13	10
Hilsenhoff Biotic Index	1.05	2.45	2.30	2.94	3.22	2.12	3.61	4.47	2.43	3.21	3.02	3.87
												450/
Percent Intolerant Individuals	88%	66%	72%	59%	47%	77%	50%	18%	70%	36%	53%	45%

83.1 82.5 75.9 80.2 82.1 88.5 83.8 43.8 90.6 68.2 88.0 67.8

Appendix C:

Habitat Assessment

Both the quality and quantity of available habitat affects the macroinvertebrate community. A healthy biological community not only requires good water quality, but also a supporting habitat. There are two types of rating systems for 2017. One is for a Riffle/Run prevalent stream, like most of the streams in Monroe County, which incorporates three categories for a total of 12 parameters. The second is the Multihabitat Low-Gradient stream for the low gradient streams that utilize 9 parameters. The following is an explanation of the habitat parameters:

Habitat Parameter Descriptions

Riffle/Run Streams

1. Instream Cover:

This is a measure of quantity and variety of natural structures in the stream that will provide a habitat for fish. (fallen trees, branches, logs, undercut banks, and large rocks)

2. Substrate for Benthic Macroinvertebrates:

This measures the amount of hard substrate available for insects and snail habitat. Many insect larvae attach themselves to submerged substrate. Areas with rocky bottoms are critical for maintaining a healthy variety of insects.

3. Embeddedness:

This refers to the degree to which rocks are covered or sunken into the silt, sand or mud. As substrates become embedded in the stream bottom, the amount of adequate surface space for insects to attach themselves decreases and the quantity and quality of the macroinvertebrate community is predicted to decrease.

4. Velocity/Depth Regime:

There are four basic velocity/depth combinations: Shallow/Fast, Shallow/Slow, Deep/Fast, and Deep/Slow

5. Channel Alteration:

This parameter is a measure of changes to the shape of the stream channel. When streams have been altered in any way (i.e., straightened, deepened, diverted, concrete channelized, artificial embankments or stabilization, dams or bridges), it can affect the macroinvertebrate community.

6. **Sediment Deposition:**

This parameter measures the sediment, which has accumulated on the stream bottom as a result of deposition. Deposition occurs as a result of large-scale movement of sediment caused by watershed erosion. This deposition may cause the formation of islands or point bars in the stream, which decreases the available habitat for macroinvertebrates.

7. Frequency of Riffles:

This parameter assumes that a stream with riffles or bends provides more diverse habitat than any straight or uniform depth stream. The ratio is calculated by dividing the average distance between riffles or bends by the average depth. The smaller ratio is an indicator of good habitat.

8. Channel Flow Status:

This is a measure of the degree to which the channel is filled with water. When the water reaches the base of both banks and a minimal amount of channel substrate is exposed, optimal conditions exist.

9. Condition of Banks:

This parameter addresses stream bank erosion (or potential for erosion). Steep banks are generally more susceptible to erosion and failure. Signs of erosion include crumbling banks, unvegetated banks, and exposed tree roots and soil.

10. Bank Vegetative Protection:

This measures the amount of stream bank covered by vegetation. Plant root systems on stream banks facilitate soil stability which reduces erosion. This parameter also provides information such as stream shading and nutrient uptake. Banks that support natural plant growth are indicative for supporting a healthier habitat for macroinvertebrates and fish.

11. Grazing Disruptive Pressure:

This parameter measures the impact to the riparian zone due to livestock grazing or human activities such as urbanization, golf courses, and residential developments.

12. Riparian Zone Width:

This is a measure of the width of the natural vegetation from the edge of the stream bank. This zone serves as a buffer to pollutants entering the stream from surface runoff.

Habitat Parameter Descriptions Multihabitat Low-Gradient Streams

1. Epifaunal Substrate for Macroinvertebrate:

The substrate in muddy bottom streams consists mostly of submerged logs, snags and aquatic vegetation.

2. Pool Substrate Characterization:

This is an evaluation of the type and condition of bottom substrates found in pools. Firm sediment types such as gravel and sand as well as rooted aquatic plants support a wider variety of organisms. A pool substrate dominated by mud or bedrock will not support a diverse community.

3. **Pool Variability:**

This parameter rates the overall mixture of pool types found in the streams. The four basic types of pools are: Large-shallow, Small-deep, Small-shallow, Large-deep. General guidelines are as follows: greater than one half the cross-section to separate large from small and one meter separating shallow and deep.

4. Sediment Deposition:

This parameter measures the sediment, which has accumulated on the bottom as a result of deposition.

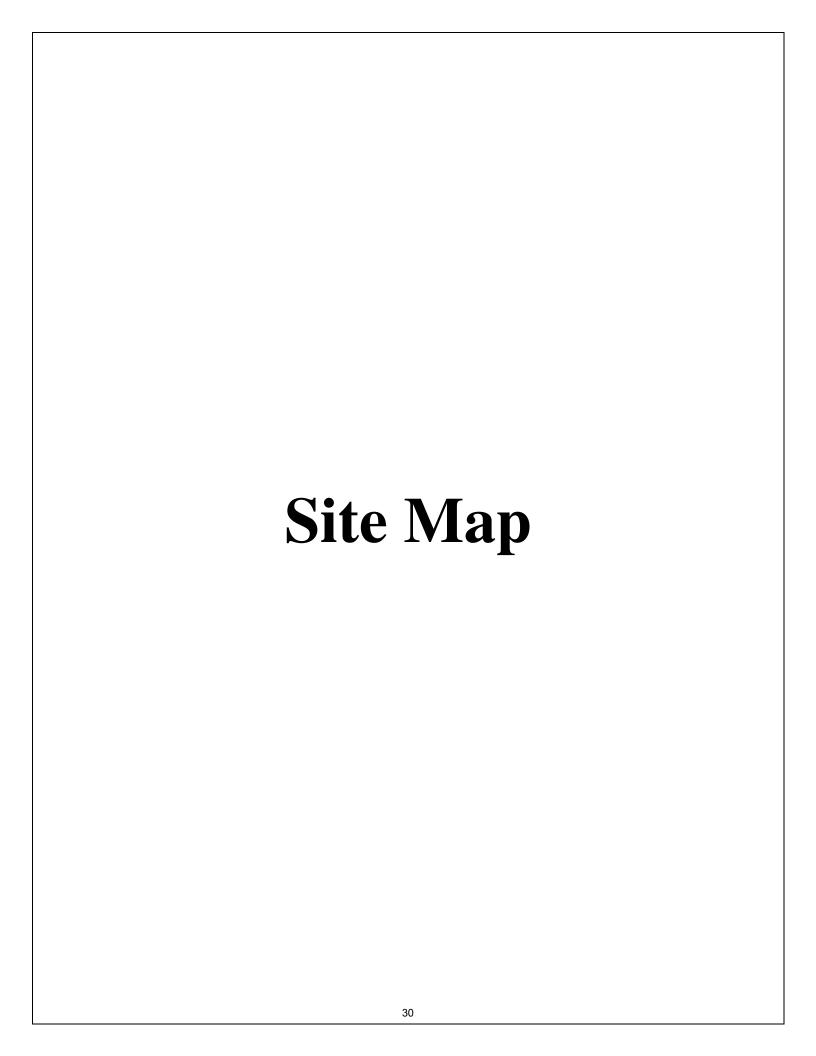
5. **Channel Flow Status:**

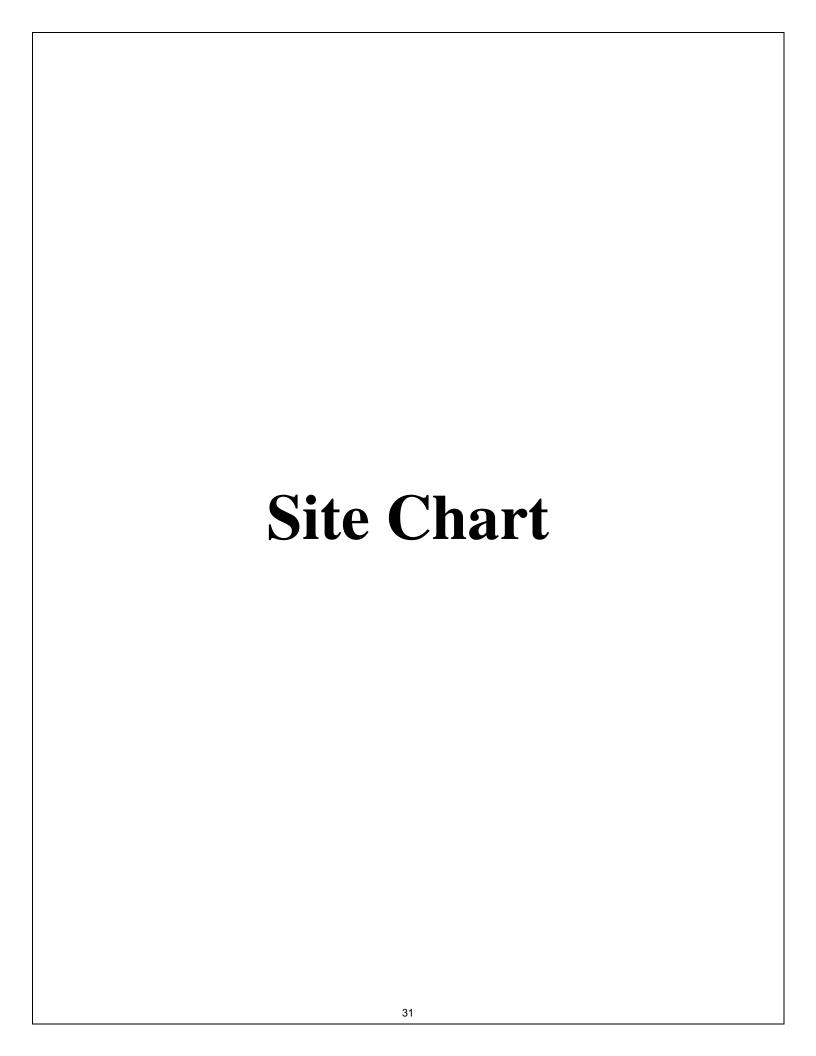
This is a determination of the percent of the channel that is filled with water. The flow status changes as the channel enlarges or as flow is decreased as a result of dams or obstructions, diversions for irrigation, or drought. When water does not cover as much of the streambed the available habitat is decreased.

6. Channel Alteration:

This parameter is a measure of changes to the shape of the stream channel. Streams that run through agricultural or urban areas may have been altered many times. When streams have been changed in any way (i.e., straightened, deepened, diverted, concrete channelized, artificial embankments or stabilization, dams or bridges) it can affect the macroinvertebrate community. Streams that have been altered have fewer natural habitats for fish, macroinvertebrates and plants.

7. Bank Stability:


This parameter addresses stream bank erosion (or potential for erosion). Steep banks are generally more susceptible to erosion and failure. Signs of erosion include crumbling and unvegetated banks and exposed tree roots and soil.


8. **Vegetative Protection:**

This measures the amount of stream bank, which is covered by vegetation. Plant root systems on stream banks facilitate soil stability, which reduces the stream bank erosion. Banks that support full natural plant growth are indicative for supporting a healthier habitat for macroinvertebrates and fish.

9. Riparian Vegetative Zone Width:

Refer to riffle/run definition.

AQUACR14

Location	Upstream of Lower Smith Gap Rd. near Quinton Drive							
Site #	2017-1	Date	4/27/2017					
Stream Name	Aquashicola Creek	Time	8:36:47 AM					
Township	Eldred	Latitude	40.82939					
Habitat Asmt.	178	Longitude	-75.44627					

Field Measurements						
Temp C	12.49					
рН	7.27					
Press inHg	29.3					
DO Percent	72.4					
DO mg/L	7.55					
Cond (uS/cm)	159					

Macroinvertebrate Metrics	
Total Taxa	21
Shannon Diversity Index	2.06
EPT Taxa Richness	7
Hilsenhoff Biotic Index	2.89
Intolerant individuals (%)	0.6296
Modified Becks Index	9
Index of Biotic Integrity	59.7

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.51	
Aluminum mg/L	<0.100	
Calcium mg/L	18.6	
Iron mg/L	<0.0500	
Magnesium mg/L	4.41	
Hardness CaCO3	64.7	
Chloride mg/L	9.65	
рН	6.28	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.443	
Alkalinity to pH 4.5 mg CaCO3/L	56.0	
Total Dissolved Solids mg/L	49	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

BRIGCR02

Location	Upstream of Angler Rd.		
Site #	2017-2	Date	5/8/2017
Stream Name	Brights Creek	Time	11:44:14 AM
Township	Price	Latitude	41.18353
Habitat Asmt.	172	Longitude	-75.16011

Field Measurements		
Temp C	11.39	
рН	6.46	
Press inHg	28.71	
DO Percent	106.8	
DO mg/L	11.19	
Cond (uS/cm)	81	

Macroinvertebrate Metrics	
Total Taxa	30
Shannon Diversity Index	2.65
EPT Taxa Richness	14
Hilsenhoff Biotic Index	2.93
Intolerant individuals (%)	0.722
Modified Becks Index	19
Index of Biotic Integrity	80

Lab Chemistry Analysis		
Total Organic Carbon mg/L	4.83	
Aluminum mg/L	<0.100	
Calcium mg/L	2.1	
Iron mg/L	<0.0500	
Magnesium mg/L	0.802	
Hardness CaCO3	8.55	
Chloride mg/L	4.08	
рН	6.71	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L	<20.0	
Total Dissolved Solids mg/L	32	
Phosphorus as P mg/L <0.200		
Biochemical Oxygen Demand mg/L	<3.00	

BUCKCR01

Location	Downstream of Chestnut Ridge Road		
Site #	2017-3	Date	4/27/2017
Stream Name	Buckwah Creek	Time	8:10:26 AM
Township	Eldred	Latitude	40.84714
Habitat Asmt.	157	Longitude	-75.45236

Field Measurements		
Temp C	12.84	
рН	7.03	
Press inHg	29.29	
DO Percent	88.9	
DO mg/L	9.19	
Cond (uS/cm)	125	

Macroinvertebrate Metrics	
Total Taxa	25
Shannon Diversity Index	2.8
EPT Taxa Richness	14
Hilsenhoff Biotic Index	3.34
Intolerant individuals (%)	0.4743
Modified Becks Index	21
Index of Biotic Integrity	73.5

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
рН		
Nitrogen as N mg/L		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

BRODCR27

Location	Pasold Farms Nature Preserve		
Site #	2017-4	Date	5/2/2017
Stream Name	Brodhead Creek	Time	7:55:02 AM
Township	Barrett	Latitude	41.18107
Habitat Asmt.	179	Longitude	-75.25104

Field Measurements		
Temp C	12.68	
рН	6.82	
Press inHg	28.51	
DO Percent	79.6	
DO mg/L	8.04	
Cond (uS/cm)	84	

Macroinvertebrate Metrics		
Total Taxa	38	
Shannon Diversity Index	3.09	
EPT Taxa Richness	21	
Hilsenhoff Biotic Index	2.73	
Intolerant individuals (%)	0.578	
Modified Becks Index	38	
Index of Biotic Integrity	93	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.18	
Aluminum mg/L	<0.100	
Calcium mg/L	4.2	
Iron mg/L	<0.0500	
Magnesium mg/L	1.16	
Hardness CaCO3	15.3	
Chloride mg/L	10.3	
рН	6.84	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.171	
Alkalinity to pH 4.5 mg CaCO3/L	<20.0	
Total Dissolved Solids mg/L	38	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

BRODCR22

Location	Upstream of Paradise confluence		
Site #	2017-5	Date	5/2/2017
Stream Name	Brodhead Creek	Time	9:25:40 AM
Township	Stroud	Latitude	41.06585
Habitat Asmt.	178	Longitude	-75.22065

Field Measurements		
Temp C	13.43	
рН	7.07	
Press inHg	28.97	
DO Percent	89.5	
DO mg/L	9.03	
Cond (uS/cm)	116	

Macroinvertebrate Metrics		
Total Taxa	26	
Shannon Diversity Index	2.16	
EPT Taxa Richness	12	
Hilsenhoff Biotic Index	2.83	
Intolerant individuals (%)	0.5875	
Modified Becks Index	25	
Index of Biotic Integrity	87.1	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.77	
Aluminum mg/L	<0.100	
Calcium mg/L	4	
Iron mg/L	<0.0500	
Magnesium mg/L	1.06	
Hardness CaCO3	14.4	
Chloride mg/L	11.1	
рН	6.9	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.0972	
Alkalinity to pH 4.5 mg CaCO3/L	<20.0	
Total Dissolved Solids mg/L	40	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

BRODCR25 R

Location	Downstream of Paradise confluence (Forevergreen Preserve)		
Site #	2017-6	Date	5/2/2017
Stream Name	Brodhead Creek	Time	9:04:12 AM
Township	Stroud	Latitude	41.06489
Habitat Asmt.	197	Longitude	-75.22034

Field Measurements		
Temp C	13.32	
рН	6.87	
Press inHg	28.98	
DO Percent	85.6	
DO mg/L	8.67	
Cond (uS/cm)	84	

Macroinvertebrate Metrics		
Total Taxa	27	
Shannon Diversity Index	2.66	
EPT Taxa Richness	13	
Hilsenhoff Biotic Index	3.05	
Intolerant individuals (%)	0.51	
Modified Becks Index	22	
Index of Biotic Integrity	89.6	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.72	
Aluminum mg/L	<0.100	
Calcium mg/L	4.75	
Iron mg/L	<0.0500	
Magnesium mg/L	1.29	
Hardness CaCO3	17.2	
Chloride mg/L	11.8	
рН	7.02	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.106	
Alkalinity to pH 4.5 mg CaCO3/L	<20.0	
Total Dissolved Solids mg/L	22	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

BRODCR25 R

Location	Downstream of Paradise confluence (Forevergreen Preserve)		
Site #	2017-7	Date	5/2/2017
Stream Name	Brodhead Creek	Time	9:04:12 AM
Township	Stroud	Latitude	41.06489
Habitat Asmt.	197	Longitude	-75.22034

Field Measurements		
Temp C	13.32	
рН	6.87	
Press inHg	28.98	
DO Percent	85.6	
DO mg/L	8.67	
Cond (uS/cm)	84	

Macroinvertebrate Metrics		
Total Taxa	22	
Shannon Diversity Index	2.33	
EPT Taxa Richness	12	
Hilsenhoff Biotic Index	2.84	
Intolerant individuals (%)	0.57	
Modified Becks Index	21	
Index of Biotic Integrity	84.6	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.71	
Aluminum mg/L	<0.100	
Calcium mg/L	4.84	
Iron mg/L	<0.0500	
Magnesium mg/L	1.29	
Hardness CaCO3	17.4	
Chloride mg/L	12.4	
рН	6.91	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.116	
Alkalinity to pH 4.5 mg CaCO3/L	<20.0	
Total Dissolved Solids mg/L	26	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

BRODCR19

Location	Uptream from River Road bridge		
Site #	2017-8	Date	5/2/2017
Stream Name	Brodhead Creek	Time	11:17:12 AM
Township	Smithfield	Latitude	40.99399
Habitat Asmt.	164	Longitude	-75.13839

Field Measurements		
Temp C	14.62	
рН	7.88	
Press inHg	29.26	
DO Percent	87.3	
DO mg/L	8.66	
Cond (uS/cm)	390	

Macroinvertebrate Metrics		
Total Taxa	21	
Shannon Diversity Index	1.57	
EPT Taxa Richness	9	
Hilsenhoff Biotic Index	5.23	
Intolerant individuals (%)	0.0865	
Modified Becks Index	13	
Index of Biotic Integrity	53.2	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.89	
Aluminum mg/L	<0.100	
Calcium mg/L	13.2	
Iron mg/L	<0.0500	
Magnesium mg/L	2.37	
Hardness CaCO3	42.8	
Chloride mg/L	35.2	
рН	6.79	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.352	
Alkalinity to pH 4.5 mg CaCO3/L	30.0	
Total Dissolved Solids mg/L	87	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

BUHICR07

Location	Just upstream of golfcourse fairway at clubhouse, above falls		
Site #	2017-9	Date	4/24/2017
Stream Name	Buck Hill Creek	Time	8:10:44 AM
Township	Barrett	Latitude	41.19428
Habitat Asmt.	210	Longitude	-75.28143

Field Measurements		
Temp C	7.61	
рН	7.83	
Press inHg	28.57	
DO Percent	118.5	
DO mg/L	13.52	
Cond (uS/cm)	31	

Macroinvertebrate Metrics		
Total Taxa	21	
Shannon Diversity Index	2.49	
EPT Taxa Richness	16	
Hilsenhoff Biotic Index	1.01	
Intolerant individuals (%)	0.95	
Modified Becks Index	31	
Index of Biotic Integrity	86.1	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.77	
Aluminum mg/L	<0.100	
Calcium mg/L	2.53	
Iron mg/L	<0.0500	
Magnesium mg/L	0.68	
Hardness CaCO3	9.11	
Chloride mg/L	4.95	
рН	6.19	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.0669	
Alkalinity to pH 4.5 mg CaCO3/L	<20.0	
Total Dissolved Solids mg/L	78	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	10.00	

BUSHCR07

Location	Downstream from STP at DWGNRA boundary		
Site #	2017-10	Date	5/8/2017
Stream Name	Bushkill Creek	Time	9:32:52 AM
Township	Middle Smithfield	Latitude	41.08479
Habitat Asmt.	209	Longitude	-75.020822

Field Measurements		
Temp C	10.16	
рН	6.73	
Press inHg	29.35	
DO Percent	88.2	
DO mg/L	9.72	
Cond (uS/cm)	29	

Macroinvertebrate Metrics		
Total Taxa	24	
Shannon Diversity Index	2.56	
EPT Taxa Richness	12	
Hilsenhoff Biotic Index	2.71	
Intolerant individuals (%)	0.63	
Modified Becks Index	21	
Index of Biotic Integrity	88.6	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	4.35	
Aluminum mg/L	<0.100	
Calcium mg/L	4.38	
Iron mg/L	<0.0500	
Magnesium mg/L	1.09	
Hardness CaCO3	15.4	
Chloride mg/L	8.12	
рН	7.11	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.0615	
Alkalinity to pH 4.5 mg CaCO3/L	<20.0	
Total Dissolved Solids mg/L	107	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

BUTZRN01

Location	Approximately 50 yards upstream of confluence with Paradise Creek.		
Site #	2017-11	Date	5/2/2017
Stream Name	Butz Run	Time	10:28:39 AM
Township	Paradise	Latitude	41.0764
Habitat Asmt.	203	Longitude	-75.23524

Field Measurements		
Temp C	14.39	
рН	7.19	
Press inHg	28.74	
DO Percent	84.7	
DO mg/L	8.3	
Cond (uS/cm)	279	

Macroinvertebrate Metrics		
Total Taxa	25	
Shannon Diversity Index	2.41	
EPT Taxa Richness	11	
Hilsenhoff Biotic Index	3.09	
Intolerant individuals (%)	0.6	
Modified Becks Index	31	
Index of Biotic Integrity	76	

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
рН		
Nitrogen as N mg/L		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

CHERCR06 R

Location	Kemmertown Bridge		
Site #	2017-12	Date	5/4/2017
Stream Name	Cherry Creek	Time	8:34:43 AM
Township	Hamilton	Latitude	40.9367
Habitat Asmt.	157	Longitude	-75.25282

Field Measurements		
Temp C	9.52	
рН	7.42	
Press inHg	29.81	
DO Percent	82.3	
DO mg/L	9.34	
Cond (uS/cm)	312	

Macroinvertebrate Metrics		
Total Taxa	22	
Shannon Diversity Index	1.41	
EPT Taxa Richness	9	
Hilsenhoff Biotic Index	1.93	
Intolerant individuals (%)	0.86	
Modified Becks Index	9	
Index of Biotic Integrity	64.4	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.08	
Aluminum mg/L	<0.100	
Calcium mg/L	25.4	
Iron mg/L	0.0942	
Magnesium mg/L	5.31	
Hardness CaCO3	85.2	
Chloride mg/L	6.97	
рН	6.91	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.245	
Alkalinity to pH 4.5 mg CaCO3/L	74.0	
Total Dissolved Solids mg/L	115	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	76.00	

CHERCR06 R

Location	Kemmertown Bridge		
Site #	2017-13	Date	5/4/2017
Stream Name	Cherry Creek	Time	8:34:43 AM
Township	Hamilton	Latitude	40.9367
Habitat Asmt.	157	Longitude	-75.25282

Field Measurements		
Temp C	9.52	
рН	7.42	
Press inHg	29.81	
DO Percent	82.3	
DO mg/L	9.34	
Cond (uS/cm)	312	

Macroinvertebrate Metrics		
Total Taxa	18	
Shannon Diversity Index	1.91	
EPT Taxa Richness	5	
Hilsenhoff Biotic Index	3.32	
Intolerant individuals (%)	0.54	
Modified Becks Index	12	
Index of Biotic Integrity	68.7	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.2	
Aluminum mg/L	<0.100	
Calcium mg/L	25.4	
Iron mg/L	0.0961	
Magnesium mg/L	5.31	
Hardness CaCO3	85.3	
Chloride mg/L	6.96	
рН	6.2	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.243	
Alkalinity to pH 4.5 mg CaCO3/L	70.0	
Total Dissolved Solids mg/L	111	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

CHERCR16

Location	Below Cherry Valley Golf Course		
		·	
Site #	2017-14	Date	5/4/2017
Stream Name	Cherry Creek	Time	10:31:20 AM
Township	Smithfield	Latitude	40.97322
Habitat Asmt.	150	Longitude	-75.16958

Field Measurements		
Temp C	11.84	
рН	7.78	
Press inHg	29.88	
DO Percent	84.5	
DO mg/L	9.11	
Cond (uS/cm)	423	

Macroinvertebrate Metrics		
Total Taxa	23	
Shannon Diversity Index	2.08	
EPT Taxa Richness	9	
Hilsenhoff Biotic Index	3.02	
Intolerant individuals (%)	0.53	
Modified Becks Index	17	
Index of Biotic Integrity	63.9	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.51	
Aluminum mg/L	<0.100	
Calcium mg/L	31.2	
Iron mg/L	0.137	
Magnesium mg/L	6.78	
Hardness CaCO3	106	
Chloride mg/L	11.3	
рН	6.99	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.253	
Alkalinity to pH 4.5 mg CaCO3/L	90.0	
Total Dissolved Solids mg/L	136	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	21.00	

CHERCR17

Location	Minisink Park near the mouth		
Site #	2017-15	Date	5/4/2017
Stream Name	Cherry Creek	Time	11:13:49 AM
Township	Smithfield	Latitude	40.98697
Habitat Asmt.	153	Longitude	-75.13752

Field Measurements		
Temp C	12.55	
рН	7.85	
Press inHg	30	
DO Percent	88.9	
DO mg/L	9.46	
Cond (uS/cm)	485	

Macroinvertebrate Metrics		
Total Taxa	15	
Shannon Diversity Index	1.22	
EPT Taxa Richness	6	
Hilsenhoff Biotic Index	1.96	
Intolerant individuals (%)	0.76	
Modified Becks Index	7	
Index of Biotic Integrity	59.5	

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
рН		
Nitrogen as N mg/L		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

CRANCR02

Location	Upstream from Cranberry Creek Drive (Paradise)		
Site #	2017-16	Date	4/24/2017
Stream Name	Cranberry Creek	Time	8:49:56 AM
Township	Paradise	Latitude	41.12078
Habitat Asmt.	179	Longitude	-75.26208

Field Measurements		
Temp C	8.47	
рН	7.52	
Press inHg	29.11	
DO Percent	122.2	
DO mg/L	13.91	
Cond (uS/cm)	100	

Macroinvertebrate Metrics		
Total Taxa	32	
Shannon Diversity Index	2.92	
EPT Taxa Richness	22	
Hilsenhoff Biotic Index	2.21	
Intolerant individuals (%)	0.74	
Modified Becks Index	35	
Index of Biotic Integrity	95.5	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.42	
Aluminum mg/L	<0.100	
Calcium mg/L	6.19	
Iron mg/L	<0.0500	
Magnesium mg/L	1.93	
Hardness CaCO3	23.4	
Chloride mg/L	17.4	
рН	6.21	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.171	
Alkalinity to pH 4.5 mg CaCO3/L	<20.0	
Total Dissolved Solids mg/L	109	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	9.00	

JONACR01

Location	PHLT Jonas Mountain Nature Preserve		
Site #	2017-17	Date	4/27/2017
Stream Name	Jonas Creek	Time	10:40:23 AM
Township	Polk	Latitude	40.97618
Habitat Asmt.	223	Longitude	-75.50773

Field Measurements		
Temp C	10.14	
рН	6.49	
Press inHg	28.42	
DO Percent	83.2	
DO mg/L 8.88		
Cond (uS/cm)	87	

Macroinvertebrate Metrics		
Total Taxa	21	
Shannon Diversity Index	2.25	
EPT Taxa Richness	12	
Hilsenhoff Biotic Index	1.05	
Intolerant individuals (%)	0.87	
Modified Becks Index	32	
Index of Biotic Integrity	81.6	

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
рН		
Nitrogen as N mg/L		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

KEIPRN01

Location	Upstream of culvert pipes on Schochs Rd. in SGL		
Site #	2017-18	Date	4/26/2017
Stream Name	Keiper Run	Time	7:59:09 AM
Township	Tunkhannock	Latitude	41.05041
Habitat Asmt.	185	Longitude	-75.53227

Field Measurements		
Temp C	8.62	
рН	6.51	
Press inHg	27.58	
DO Percent	82.5	
DO mg/L	8.86	
Cond (uS/cm)	175	

Macroinvertebrate Metrics		
Total Taxa		
Shannon Diversity Index		
EPT Taxa Richness		
Hilsenhoff Biotic Index		
Intolerant individuals (%)		
Modified Becks Index		
Index of Biotic Integrity		

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
рН		
Nitrogen as N mg/L		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

MARSCR06

Location	Upstream of Wood Dale Rd in Delaware State Forest		
Site #	2017-19	Date	5/8/2017
Stream Name	Marshalls Creek	Time	10:48:37 AM
Township	Middle Smithfield	Latitude	41.10866
Habitat Asmt.	207	Longitude	-75.15682

Field Measurements		
Temp C	9.67	
рН	6.36	
Press inHg	28.74	
DO Percent	71.6	
DO mg/L	7.82	
Cond (uS/cm)	73	

Macroinvertebrate Metrics		
Total Taxa	21	
Shannon Diversity Index	1.63	
EPT Taxa Richness	11	
Hilsenhoff Biotic Index	3.03	
Intolerant individuals (%)	0.79	
Modified Becks Index	24	
Index of Biotic Integrity	70.2	

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
рН		
Nitrogen as N mg/L		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

MARSCR11

Location	Approximately 100 yards upstream of Newton Run and White Heron Lake		
Site #	2017-20	Date	5/8/2017
Stream Name	Marshalls Creek	Time	10:16:06 AM
Township	Middle Smithfield	Latitude	41.05435
Habitat Asmt.	206	Longitude	-75.13667

Field Measurements		
Temp C	9.47	
рН	6.81	
Press inHg	29.16	
DO Percent	93.7	
DO mg/L	10.43	
Cond (uS/cm)	113	

Macroinvertebrate Metrics		
Total Taxa	25	
Shannon Diversity Index	2.59	
EPT Taxa Richness	14	
Hilsenhoff Biotic Index	2.41	
Intolerant individuals (%)	0.6846	
Modified Becks Index	26	
Index of Biotic Integrity	80.5	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.55	
Aluminum mg/L	<0.100	
Calcium mg/L	7.58	
Iron mg/L	<0.0500	
Magnesium mg/L	1.63	
Hardness CaCO3	25.6	
Chloride mg/L	12.4	
рН	6.81	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.155	
Alkalinity to pH 4.5 mg CaCO3/L	<20.0	
Total Dissolved Solids mg/L	58	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

MARSCR18

Location	Upstream from Post Office Road		
Site #	2017-21	Date	5/8/2017
Stream Name	Marshalls Creek	Time	7:55:43 AM
Township	Smithfield	Latitude	40.99872
Habitat Asmt.	175	Longitude	-75.13971

Field Measurements		
Temp C	10.21	
рН	7.01	
Press inHg	29.42	
DO Percent	85.5	
DO mg/L	9.43	
Cond (uS/cm)	261	

Macroinvertebrate Metrics		
Total Taxa	29	
Shannon Diversity Index	2.63	
EPT Taxa Richness	15	
Hilsenhoff Biotic Index	3.12	
Intolerant individuals (%)	0.57	
Modified Becks Index	17	
Index of Biotic Integrity	76	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.59	
Aluminum mg/L	<0.100	
Calcium mg/L	22.3	
Iron mg/L	<0.0500	
Magnesium mg/L	2.87	
Hardness CaCO3	67.5	
Chloride mg/L	27.2	
рН	6.85	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.181	
Alkalinity to pH 4.5 mg CaCO3/L	38.0	
Total Dissolved Solids mg/L	125	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

Location	Near headwaters downstream of Rt. 715		
Site #	2017-22	Date	5/9/2017
Stream Name	McMichael Creek	Time	8:30:58 AM
Township	Chestnuthill	Latitude	40.99452
Habitat Asmt.	204	Longitude	-75.39839

Field Measurements		
Temp C	7.64	
рН	5.83	
Press inHg	28.83	
DO Percent	96.4	
DO mg/L	11.09	
Cond (uS/cm)	18	

Macroinvertebrate Metrics		
Total Taxa	30	
Shannon Diversity Index	2.65	
EPT Taxa Richness	19	
Hilsenhoff Biotic Index	2.75	
Intolerant individuals (%)	0.65	
Modified Becks Index	41	
Index of Biotic Integrity	91.6	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	0.975	
Aluminum mg/L	<0.100	
Calcium mg/L	2	
Iron mg/L	<0.0500	
Magnesium mg/L	0.945	
Hardness CaCO3	8.89	
Chloride mg/L	4.59	
рН	5.11	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.143	
Alkalinity to pH 4.5 mg CaCO3/L	<20.0	
Total Dissolved Solids mg/L	60	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

Location	Upstream of McIlhaney Rd.		
Site #	2017-23	Date	5/9/2017
Stream Name	McMichael Creek	Time	9:07:38 AM
Township	Chestnuthill	Latitude	40.93075
Habitat Asmt.	200	Longitude	-75.36402

Field Measurements		
Temp C	8.22	
рН	6.62	
Press inHg	29.18	
DO Percent	91.8	
DO mg/L	10.54	
Cond (uS/cm)	30	

Macroinvertebrate Metrics		
Total Taxa	29	
Shannon Diversity Index	2.56	
EPT Taxa Richness	17	
Hilsenhoff Biotic Index	3.55	
Intolerant individuals (%)	0.49	
Modified Becks Index	33	
Index of Biotic Integrity	81.9	

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
рН		
Nitrogen as N mg/L		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

Location	Hickory Valley Park		
Site #	2017-24	Date	5/9/2017
Stream Name	McMichael Creek	Time	11:34:00 AM
Township	Stroud	Latitude	40.96202
Habitat Asmt.	186	Longitude	-75.23635

Field Measurements		
Temp C	11.05	
рН	7.32	
Press inHg	29.48	
DO Percent	114.8	
DO mg/L	12.44	
Cond (uS/cm)	48	

Macroinvertebrate Metrics		
Total Taxa	25	
Shannon Diversity Index	2.65	
EPT Taxa Richness	12	
Hilsenhoff Biotic Index	3.67	
Intolerant individuals (%)	0.46	
Modified Becks Index	14	
Index of Biotic Integrity	78.6	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.53	
Aluminum mg/L	<0.100	
Calcium mg/L	12.8	
Iron mg/L	0.0855	
Magnesium mg/L	2.29	
Hardness CaCO3	41.3	
Chloride mg/L	20.3	
рН	7.03	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.408	
Alkalinity to pH 4.5 mg CaCO3/L	30.0	
Total Dissolved Solids mg/L	127	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

Location	Upstream of confluence with Brodhead		
Site #	2017-25	Date	5/9/2017
Stream Name	McMichael Creek	Time	10:33:23 AM
Township	Stroudsburg	Latitude	40.98812
Habitat Asmt.	180	Longitude	-75.18502

Field Measurements		
Temp C	10.43	
рН	7.35	
Press inHg	29.6	
DO Percent	99.9	
DO mg/L	11.04	
Cond (uS/cm)	130	

Macroinvertebrate Metrics		
Total Taxa	21	
Shannon Diversity Index	2.33	
EPT Taxa Richness	11	
Hilsenhoff Biotic Index	4.4	
Intolerant individuals (%)	0.26	
Modified Becks Index	17	
Index of Biotic Integrity	69.2	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.97	
Aluminum mg/L	<0.100	
Calcium mg/L	14.2	
Iron mg/L	0.0775	
Magnesium mg/L	2.58	
Hardness CaCO3	46.1	
Chloride mg/L	36.2	
рН	7.04	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.31	
Alkalinity to pH 4.5 mg CaCO3/L	28.0	
Total Dissolved Solids mg/L	167	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

MILLCR03

Location	Mill Creek Road Natural Lands Trust property		
Site #	2017-26	Date	4/24/2017
Stream Name	Mill Creek Creek	Time	9:27:37 AM
Township	Barrett	Latitude	41.16326
Habitat Asmt.	213	Longitude	-75.24884

Field Measurements		
Temp C	8.31	
рН	7.57	
Press inHg	29	
DO Percent	128.1	
DO mg/L	14.57	
Cond (uS/cm)	80	

Macroinvertebrate Metrics		
Total Taxa	34	
Shannon Diversity Index	2.87	
EPT Taxa Richness	21	
Hilsenhoff Biotic Index	2.12	
Intolerant individuals (%)	0.74	
Modified Becks Index	41	
Index of Biotic Integrity	97	

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
рН		
Nitrogen as N mg/L		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

MOUNRN01

Location	Above Cherry Creek Confluence		
Site #	2017-27	Date	5/4/2017
Stream Name	Mountain Run	Time	9:47:50 AM
Township	Stroud	Latitude	40.95436
Habitat Asmt.	183	Longitude	-75.19679

Field Measurements		
Temp C	10.11	
рН	7.51	
Press inHg	29.59	
DO Percent	84.1	
DO mg/L	9.35	
Cond (uS/cm)	236	

Macroinvertebrate Metrics		
Total Taxa	22	
Shannon Diversity Index	2.34	
EPT Taxa Richness	12	
Hilsenhoff Biotic Index	1.05	
Intolerant individuals (%)	0.88	
Modified Becks Index	33	
Index of Biotic Integrity	83.1	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.62	
Aluminum mg/L	<0.100	
Calcium mg/L	14.6	
Iron mg/L	0.0927	
Magnesium mg/L	2.14	
Hardness CaCO3	45.2	
Chloride mg/L	16.4	
рН	6.77	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.101	
Alkalinity to pH 4.5 mg CaCO3/L	38.0	
Total Dissolved Solids mg/L	87	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

PARACR08

Location	Upstream of Brodhead confluence		
Site #	2017-28	Date	5/2/2017
Stream Name	Paradise Creek	Time	9:39:32 AM
Township	Stroud	Latitude	41.06629
Habitat Asmt.	176	Longitude	-75.22138

Field Measurements		
Temp C	13.64	
рН	7.66	
Press inHg	29	
DO Percent	89.3	
DO mg/L	8.97	
Cond (uS/cm)	432	

Macroinvertebrate Metrics		
Total Taxa	19	
Shannon Diversity Index	1.85	
EPT Taxa Richness	12	
Hilsenhoff Biotic Index	2.45	
Intolerant individuals (%)	0.66	
Modified Becks Index	21	
Index of Biotic Integrity	82.5	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.5	
Aluminum mg/L	<0.100	
Calcium mg/L	9.64	
Iron mg/L	<0.0500	
Magnesium mg/L	2.56	
Hardness CaCO3	34.6	
Chloride mg/L	42	
рН	6.74	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.372	
Alkalinity to pH 4.5 mg CaCO3/L	20.0	
Total Dissolved Solids mg/L	95	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

POCOCR01

Location	Approximately 250 yards downstream of Wilke Road, east of Wilkie Road.		
Site #	2017-29	Date	5/1/2017
Stream Name	Pocono Creek	Time	8:36:27 AM
Township	Pocono	Latitude	41.0628
Habitat Asmt.	205	Longitude	-75.3581

Field Measurements		
Temp C	10.58	
рН	6.88	
Press inHg	28.38	
DO Percent	79	
DO mg/L	8.33	
Cond (uS/cm)	118	

Macroinvertebrate Metrics		
Total Taxa	22	
Shannon Diversity Index	2.27	
EPT Taxa Richness	11	
Hilsenhoff Biotic Index	2.3	
Intolerant individuals (%)	0.72	
Modified Becks Index	27	
Index of Biotic Integrity	75.9	

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
рН		
Nitrogen as N mg/L		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

POCOCR09

Location	Upstream of Old Mill Rd. on Pocono Heritage Land Trust property		
Site #	2017-30	Date	5/1/2017
Stream Name	Pocono Creek	Time	9:03:27 AM
Township	Pocono	Latitude	41.03934
Habitat Asmt.	180	Longitude	-75.30962

Field Measurements		
Temp C	11.26	
рН	7.12	
Press inHg	28.86	
DO Percent	80.1	
DO mg/L	8.46	
Cond (uS/cm)	257	

Macroinvertebrate Metrics		
Total Taxa	24	
Shannon Diversity Index	2.69	
EPT Taxa Richness	16	
Hilsenhoff Biotic Index	2.94	
Intolerant individuals (%)	0.59	
Modified Becks Index	28	
Index of Biotic Integrity	80.2	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	1.6	
Aluminum mg/L	<0.100	
Calcium mg/L	10.3	
Iron mg/L	<0.0500	
Magnesium mg/L	2.59	
Hardness CaCO3	36.4	
Chloride mg/L	47.6	
рН	6.67	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.27	
Alkalinity to pH 4.5 mg CaCO3/L	20.0	
Total Dissolved Solids mg/L	126	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	<3.00	

POCOCR14

Location	Upstream of confuence with McMichael Creek		
Site #	2017-31	Date	5/1/2017
Stream Name	Pocono Creek	Time	9:53:58 AM
Township	Stroudsburg	Latitude	40.98101
Habitat Asmt.	156	Longitude	-75.19698

Field Measurements		
Temp C	12.84	
рН	7.33	
Press inHg	29.43	
DO Percent	79.6	
DO mg/L 8.26		
Cond (uS/cm)	272	

Macroinvertebrate Metrics		
Total Taxa	23	
Shannon Diversity Index	2.15	
EPT Taxa Richness	12	
Hilsenhoff Biotic Index	3.22	
Intolerant individuals (%)	0.47	
Modified Becks Index	23	
Index of Biotic Integrity	82.1	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	2.26	
Aluminum mg/L	<0.100	
Calcium mg/L	16.4	
Iron mg/L	<0.0500	
Magnesium mg/L	3.35	
Hardness CaCO3	54.7	
Chloride mg/L	57	
рН	6.55	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.262	
Alkalinity to pH 4.5 mg CaCO3/L	40.0	
Total Dissolved Solids mg/L	155	
Phosphorus as P mg/L	0.681	
Biochemical Oxygen Demand mg/L	<3.00	

POHOCR01

Location	Southern end of Shiffer Property off Merwinsburg Road (near Burger Hollow Road)		
Site #	2017-32	Date	4/27/2017
Stream Name	Pohopoco Creek	Time	9:48:06 AM
Township	Chestnuthill	Latitude	40.96147
Habitat Asmt.	207	Longitude	-75.46486

Field Measurements		
Temp C	10.84	
рН	7.18	
Press inHg	28.82	
DO Percent	73.2	
DO mg/L	7.79	
Cond (uS/cm)	121	

Macroinvertebrate Metrics		
Total Taxa	32	
Shannon Diversity Index	2.52	
EPT Taxa Richness	14	
Hilsenhoff Biotic Index	2.12	
Intolerant individuals (%)	0.77	
Modified Becks Index	32	
Index of Biotic Integrity	88.5	

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
рН		
Nitrogen as N mg/L		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

POHOCR29

Location	Near Whitey B. Drive on Polk Township Property		
Site #	2017-33	Date	4/27/2017
Stream Name	Pohopoco Creek	Time	9:11:15 AM
Township	Polk	Latitude	40.89956
Habitat Asmt.	190	Longitude	-75.50643

Field Measurements		
Temp C	12.6	
рН	6.99	
Press inHg	29.13	
DO Percent	75.5	
DO mg/L	7.81	
Cond (uS/cm)	122	

Macroinvertebrate Metrics		
Total Taxa	26	
Shannon Diversity Index	2.51	
EPT Taxa Richness	14	
Hilsenhoff Biotic Index	3.61	
Intolerant individuals (%)	0.5	
Modified Becks Index	17	
Index of Biotic Integrity	83.8	

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
рН		
Nitrogen as N mg/L		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

PONDCR04

Location	Immediately downstream of Primrose Lane		
Site #	2017-34	Date	5/1/2017
Stream Name	Pond Creek	Time	7:43:36 AM
Township	Middle Smithfield	Latitude	41.05645
Habitat Asmt.	162	Longitude	-75.10336

Field Measurements		
Temp C	12.89	
рН	6.39	
Press inHg	29.37	
DO Percent	71.1	
DO mg/L	7.36	
Cond (uS/cm)	290	

Macroinvertebrate Metrics		
Total Taxa	16	
Shannon Diversity Index	2.07	
EPT Taxa Richness	7	
Hilsenhoff Biotic Index	4.47	
Intolerant individuals (%)	0.18	
Modified Becks Index	6	
Index of Biotic Integrity	43.8	

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
рН		
Nitrogen as N mg/L		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

SWIFCR10

Location	Immediately Downstream of Route 314 Bridge		
Site #	2017-35	Date	4/24/2017
Stream Name	Swiftwater Creek	Time	10:11:07 AM
Township	Pocono	Latitude	41.1009
Habitat Asmt.	173	Longitude	-75.34643

Field Measurements		
Temp C	8.06	
рН	7.84	
Press inHg	28.57	
DO Percent	125.1	
DO mg/L	14.1	
Cond (uS/cm)	143	

Macroinvertebrate Metrics		
Total Taxa	24	
Shannon Diversity Index	2.5	
EPT Taxa Richness	18	
Hilsenhoff Biotic Index	2.43	
Intolerant individuals (%)	0.7	
Modified Becks Index	29	
Index of Biotic Integrity	90.6	

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
рН		
Nitrogen as N mg/L		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

TOBYCR01

Location	Upstream of Route 423 bridge in SGL. 127		
Site #	2017-36	Date	4/26/2017
Stream Name	Tobyhanna Creek	Time	10:25:18 AM
Township	Coolbaugh	Latitude	41.16198
Habitat Asmt.	196	Longitude	-75.45486

Field Measurements		
Temp C	10.97	
рН	7.38	
Press inHg	27.7	
DO Percent	90.9	
DO mg/L	9.27	
Cond (uS/cm)	176	

Macroinvertebrate Metrics		
Total Taxa	18	
Shannon Diversity Index	2.61	
EPT Taxa Richness	10	
Hilsenhoff Biotic Index	3.21	
Intolerant individuals (%)	0.36	
Modified Becks Index	19	
Index of Biotic Integrity	68.2	

Lab Chemistry Analysis		
Total Organic Carbon mg/L		
Aluminum mg/L		
Calcium mg/L		
Iron mg/L		
Magnesium mg/L		
Hardness CaCO3		
Chloride mg/L		
рН		
Nitrogen as N mg/L		
Ammonia as N mg/L		
Total Kjeldahl N mg/L		
Nitrate as N mg/L		
Alkalinity to pH 4.5 mg CaCO3/L		
Total Dissolved Solids mg/L		
Phosphorus as P mg/L		
Biochemical Oxygen Demand mg/L		

TOBYCR14

Location	Upstream of Route 115 bridge in Blakeslee		
Site #	2017-37	Date	4/26/2017
Stream Name	Tobyhanna Creek	Time	9:12:22 AM
Township	Tobyhanna	Latitude	41.08276
Habitat Asmt.	180	Longitude	-75.58399

Field Measurements		
Temp C	12.01	
рН	6.89	
Press inHg	27.91	
DO Percent	93.1	
DO mg/L	9.34	
Cond (uS/cm)	133	

Macroinvertebrate Metrics		
Total Taxa	26	
Shannon Diversity Index	2.51	
EPT Taxa Richness	13	
Hilsenhoff Biotic Index	3.02	
Intolerant individuals (%)	0.53	
Modified Becks Index	21	
Index of Biotic Integrity	88	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	7.51	
Aluminum mg/L	0.107	
Calcium mg/L	2.02	
Iron mg/L	0.245	
Magnesium mg/L	0.758	
Hardness CaCO3	8.16	
Chloride mg/L	11.8	
рН	6.79	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.156	
Alkalinity to pH 4.5 mg CaCO3/L	<20.0	
Total Dissolved Solids mg/L	67	
Phosphorus as P mg/L	0.905	
Biochemical Oxygen Demand mg/L	5.00	

TUNKCR03

Location	Immediately upstream of Route 115		
Site #	2017-38	Date	4/26/2017
Stream Name	Tunkhannock Creek	Time	8:37:59 AM
Township	Hunkhannock	Latitude	41.05923
Habitat Asmt.	196	Longitude	-75.55314

Field Measurements		
Temp C	9.9	
рН	5.35	
Press inHg	27.66	
DO Percent	91.8	
DO mg/L	9.59	
Cond (uS/cm)	49	

Macroinvertebrate Metrics		
Total Taxa	20	
Shannon Diversity Index	2.41	
EPT Taxa Richness	10	
Hilsenhoff Biotic Index	3.87	
Intolerant individuals (%)	0.45	
Modified Becks Index	14	
Index of Biotic Integrity	67.8	

Lab Chemistry Analysis		
Total Organic Carbon mg/L	5.8	
Aluminum mg/L	<0.100	
Calcium mg/L	4.82	
Iron mg/L	0.193	
Magnesium mg/L	0.995	
Hardness CaCO3	16.1	
Chloride mg/L	25.4	
рН	5.9	
Nitrogen as N mg/L		
Ammonia as N mg/L	<0.500	
Total Kjeldahl N mg/L	<1.00	
Nitrate as N mg/L	0.131	
Alkalinity to pH 4.5 mg CaCO3/L	<20.0	
Total Dissolved Solids mg/L	80	
Phosphorus as P mg/L	<0.200	
Biochemical Oxygen Demand mg/L	6.00	

Conclusions and Recommendations

Macroinvertebrates

The potentially impaired sites are indicated below.

IBI Scores did not reach the recommended Aquatic Life Use Attainment Benchmarks

Site 1 (AQUACR14) IBI Score 59.7

Aquashicola – Upstream of Lower Smith Gap Rd. near Quinton Drive

The low IBI score from this site could be influence by the low gradient of the stream channel. This stream did not qualify as a low gradient/multi-habitat stream because of the riffles at the upper end of the reach. The low IBI score could be related to the limited amount of dissolved oxygen in the water caused by a decreased number of riffles along the stream reach. It is recommended that a site on the lower Aquashicola Creek with higher quality riffle-run habitat be added to the 2018 study.

Site #8 (BRODCR19) IBI Score 53.2

Brodhead Creek— Upstream from River Road Bridge

Through the years, this site has seen increased and decreased water quality based on past study data. The non-attaining IBI score from this site is most likely caused by point and nonpoint source pollution from urban runoff upstream from the mouth. It is recommended that this site be monitored annually in future studies because of the large percentage of the county that this stream drains. The IBI scores from sites upstream of the mouth have increased with elevation and surrounding land cover. The highest IBI score on the Brodhead was 93 which is the most upstream study site on the main stem of the Brodhead.

Site 15 (CHERCR17) IBI Score 59.5

Cherry Creek - Minisink Park near the mouth

Similar to Aquashicola Creek, the low IBI score of this site near the mouth of Cherry Creek did not quality as a low gradient/multi-habitat stream. The low gradient of Cherry Creek may influence the score because of the decrease in oxygen dissolving riffles. Cherry Creek is not classified as a limestone creek however it is a limestone influenced creek due to the surrounding bedrock geology. Limestone creeks tend to be lower in biodiversity but can have a larger biomass of macro invertebrates. It is recommended that a site on Cherry Creek be added above Minisink Park in higher quality habitat.

Site 34 (PONDCR04) IBI Score 43.8

Pond Creek – Immediately downstream of Primrose Lane

The low IBI score could be influenced by the proximity to the Pond Creek impoundments which produce warmer water temperatures and lack of oxygen. This site also had the lowest dissolved oxygen measurement in the study which would further support the relative warmer water temperature cause by the impoundments.

Chemistry Analysis

Low Alkalinity throughout Monroe County

Most of the sites showed low alkalinity scores. Low alkalinity is not harmful to a stream, however, low alkalinity decreases the water's ability to buffer acids and protect aquatic life against sudden changes in pH. These values are normal when considering the geology of Monroe County. Most of the streams that were studied in this report flow within areas of silica rich sandstone and quartzite conglomerates, as well as red and grey sandstone and shales. These rocks generally have low carbonate values which would be responsible for low surface and ground water alkalinity values. Cherry Creek, the lower half of Marshalls Creek, and the mouth of Brodhead Creek flow through carbonate rich shales and siltstones which may be the reason for higher alkalinity values when compared to the rest of the county.

Recommendations

After reviewing the data from the 2017 Water Quality Study, the lead and cooperating agencies recommend the following:

- All of the sites listed as impaired should be retested the following year to continue with data trend collection.
- 34 of 38 sites in the county are healthy attaining streams.
- Overall, much of the data that was collected during the study represents many miles of quality streams in Monroe County.
- Continued monitoring and increased trend data are essential tools to stream quality protection.

Bibliography

Clesceri, L.S., A. E. Greenberg, and A. D. Eaton., 1998. Standard Methods for the Examination of Water and Wastewater, 20th Edition. American Public Health Association. Washington DC.

Commonwealth of Pennsylvania., 2000. Title 25, Pennsylvania Code, Section 93. Specific Water Quality Criteria.

Environmental Protection Agency., 2001. Ambient Water Quality Criteria Recommendations. Rivers and Streams in Nutrient Ecoregion VIII. Doc. ID: EPA 822-B-01-015. Office of Water. Washington, DC.

Karr, J. R., and E. W. Chu., 1999. Restoring Life in Running Waters Better Biological Monitoring. Island Press, Washington, DC. 206p.

Merritt, R., and K. Cummins., 1984. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque Iowa. 31p.

Monroe County Planning Commission., 2008. Monroe County Water Quality Study 2008, Vol. I & II., Stroudsburg, Pennsylvania. 182pp.

Pennsylvania Department of Environmental Protection., 2009. Draft-Instream Comprehensive Evaluation Surveys. Doc. ID: 391-3200-001. Bureau of Water Standards and Facility Regulation. Harrisburg, Pennsylvania. 56pp.

Pennsylvania Department of Environmental Protection., 2007. Multi-habitat Stream Assessment Protocol. Bureau of Water Standards and Facility Regulation. Harrisburg, Pennsylvania. 44pp.

United States Environmental Protection Agency. (2007). Ecoregions of North America. Retrieved February 9, 2009, Web site: http://www.epa.gov/wed/pages/ecoregions.htm.

Vølstad, J.H, N.E. Roth, M.T. Southerland and G. Mercurio. 2003. Pilot Study for Montgomery County and Maryland DNR Data Integration: Comparison of Benthic Macroinvertebrate Sampling Protocols for Freshwater Streams. Prepared by Versar, Inc., Columbia, Maryland for U.S. Environmental Protection Agency, Office of Environmental Information and Mid-Atlantic Integrated Assessment Program, Region 3, Ft. Meade, MD. 30pp.